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Abstract

When conducting clinical trials with hierarchically ordered objectives, it is
essential to use multiplicity adjustment methods that control the familywise
error rate in the strong sense while taking into account the logical relations
among the null hypotheses. This paper proposes a gatekeeping procedure based
on the Hommel (1988) test which offers power advantages compared to other
p-value based tests proposed in the literature. A general description of the
procedure is given and details are presented on how it can be applied to complex
clinical trial designs. Two clinical trial examples are given to illustrate the
methodology developed in the paper.
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1 Introduction

Gatekeeping procedures are often used to address multiplicity issues in clinical tri-
als with hierarchically ordered objectives, e.g., comparisons of multiple doses with
placebo on the primary endpoint followed by the same comparisons on the secondary
endpoint. Testing multiple null hypotheses may result in substantial inflation of the
familywise error rate (FWER), i.e. the probability of erroneously rejecting at least
one true null hypothesis. It is essential to ensure that a multiple testing procedure
(MTP) controls the FWER in the strong sense (Hochberg and Tamhane, 1987), i.e.
under any configuration of the true and false null hypotheses, at a preassigned level
of significance α.

Over the past decade, many gatekeeping procedures (Dmitrienko and Tamhane,
2009) have been proposed to address the problem of FWER control when the null
hypotheses are hierarchically ordered with logical relations. The null hypotheses are
grouped into families and tested in a sequential manner beginning with the most
important family, e.g., the family of hypotheses on the primary endpoint. Inferences
in each family depend on the acceptance or rejection of null hypotheses in the earlier
families. Conversely, acceptance or rejection of a null hypothesis in a given family may
not depend on the results in later families — the so-called independence condition.

Different types of logical gatekeeping constraints among the families of hypotheses
have been studied including serial gatekeeping (Maurer et al. 1995, Bauer et al. 1998,
Westfall and Krishen 2001), parallel gatekeeping (Maurer et al. 1995, Dmitrienko,
Offen and Westfall 2003) and their generalization referred to as tree-structured gate-
keeping (Dmitrienko et al. 2007, 2008). Dmitrienko and Tamhane (2010a,b) recently
proposed a general framework for constructing gatekeeping procedures, called the
mixture method. This approach enables clinical trial sponsors to set up highly flex-
ible decision rules involving complex logical restrictions between the null hypotheses
while controlling the FWER in the strong sense.

To motivate the mixture gatekeeping procedures, consider the problem of testing
the effect of a treatment at multiple dose levels versus a common control with respect
to multiple endpoints. The endpoints are ordered by the importance of clinical ob-
jectives beginning with the primary endpoint. The null hypotheses corresponding to
different endpoints are grouped into separate families.

Figure 1 illustrates this hypothesis testing problem using an example from a trial
in patients with schizophrenia. The aim of the trial was to compare three doses
(L: Low dose; M: Medium dose; H: High dose) of a novel atypical antipsychotic to a
control for three ordered endpoints. In Figure 1, logical restrictions are represented by
arrows. In this example, if H1 fails to be rejected, H4 and H7 should be automatically
accepted. This is done to reflect the fact that if the low dose cannot be shown to be
superior to the control for the primary endpoint, there is no value in further testing
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the efficacy of that dose for the two secondary endpoints. The trial’s sponsor was
interested in defining a gatekeeping procedure to help enrich the product label by
including information on the significant treatment effects for the primary as well as
both the secondary endpoints.

[Insert Figure 1 here]

This paper applies the mixture method using the Hommel (1988) MTP as a com-
ponent procedure. The resulting mixture gatekeeping procedure will be referred to as
the Hommel-based gatekeeping procedure. The Hommel MTP is more powerful than
other p-value based MTPs proposed in the literature, e.g., Bonferroni, Holm (1979)
and Hochberg (1988) MTPs. Thus the new procedure proposed in this paper presents
an obvious advantage over the existing p-value based gatekeeping procedures.

The paper is organized as follows: Section 2 presents the statement of the problem
and gives a brief desciption of the general method for constructing mixture gatekeep-
ing procedures. In Section 3, the Hommel-based gatekeeping procedure is defined
for parallel gatekeeping and its strong control of the FWER is established. This
procedure is generalized in Section 3.3 to tree-structured gatekeeping problems. In
Section 4, two clinical trial examples are presented to illustrate the procedure. Fi-
nally, Section 5 offers brief conclusions. The proofs of theoretical results are given in
the Appendix.

2 Mixture gatekeeping procedures

Consider a problem involving n ≥ 2 null hypotheses H1, . . . , Hn that are grouped into
m families with ni null hypotheses in the ith family (n1 + . . .+ nm = n). Specifically,
let Fi = {Hj , j ∈ Ni}, i = 1, . . . , m, m ≥ 2, where

N1 = {1, . . . , n1}, Ni = {n1 + . . . + ni−1 + 1, . . . , n1 + . . . + ni}, i = 2, . . . , m.

Further consider closed testing procedures (Marcus, Peritz and Gabriel, 1976)
P i, i = 1, . . . , m, known as component procedures, that provide local FWER control,
i.e., P i controls the FWER in the strong sense at any preassigned level α within
Fi. Our goal is to build a mixture of the component procedures P i, i = 1, . . . , m,
which will be denoted by P , using the methodology proposed in Dmitrienko and
Tamhane (2010a,b). This gatekeeping procedure P will be a closed testing procedure
with strong global FWER control within the combined family of null hypotheses
F = F1 ∪ . . . ∪ Fm. Global FWER control helps the trial’s sponsor justify inclusion
of all significant findings with respect to the primary and secondary objectives in the
product label.

Before we give the method of constructing mixture procedures, we need to intro-
duce the key concepts of the error rate function and separability.
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2.1 Error rate function and separability

To simplify the notation, in this section we will consider the problem of testing a single
family of null hypotheses F = {H1, . . . , Hn}. Denote the marginal (raw) p-values,
obtained from appropriate statistical tests, associated with these null hypotheses by
p1, . . . , pn.

Consider the index set N = {1, . . . , n} and a subset I ⊆ N . Further, consider
an MTP for testing the null hypotheses H1, . . . , Hn which controls the FWER in
the strong sense within this family at level α. The error rate function of this MTP
is defined as the maximum probability of making at least one Type I error when
the null hypotheses Hi, i ∈ I, are true and the remaining null hypotheses are false
(Dmitrienko, Tamhane and Wiens, 2008). The error rate function is denoted by
e(I|α) and formally defined as

e(I|α) = sup P

{
⋃

i∈I

(Reject Hi)

∣∣∣∣∣H(I)

}
,

where the supremum of the probability is computed over the entire parameter space
corresponding to the intersection hypothesis H(I) = ∩i∈IHi.

Generally, an easily computable upper bound on e(I|α) is used since an exact
expression is difficult to obtain. We will treat the upper bound itself as the actual
error rate function and denote it by the same notation e(I|α). The following natural
conditions are generally satisfied by the error rate functions of standard MTPs (or
they are easy to enforce if violated).

• e(∅|α) = 0, i.e., no Type I error is committed when all null hypotheses are false.

• e(I|α) ≤ e(J |α) if I ⊆ J ⊆ N , i.e., the type I error rate is a monotone function
of the set of true null hypotheses.

• e(N |α) = α, i.e., the Type I error rate is maximized when all null hypotheses
are true and equals the nominal significance level α.

The error rate function is used to define the minimum fraction of α remaining
after testing the null hypotheses in a given family and which can be carried over to
the next family. To ensure that the fraction of α carried over to the next family is
positive when some null hypotheses are rejected in the current family, the MTP used
to test the family needs to be separable. An MTP is said to be separable if its error
rate function is strictly less than (separates from) α when not all null hypotheses are
true, i.e., e(I|α) < α if I is a proper subset of N .

We are now ready to introduce mixture procedures.



For more information, see http://www.multxpert.com/wiki/Gatekeeping Papers 5

2.2 Mixture gatekeeping procedures

Consider the setup introduced at the beginning of this section and further assume
that the component procedures P1, . . . ,Pm−1 are separable. Each P i is a closed
procedure and thus there exists a local test of every non-empty intersection hypothesis
H(Ii) = ∩j∈Ii

Hj where Ii ⊆ Ni. Let pi(Ii) denote the local p-value for testing H(Ii)
using P i.

Consider the combined family of null hypotheses F = F1 ∪ . . .∪Fm. The mixture
procedure is based on the closure principle (Marcus et al. 1976) to control the FWER
for this family at a preassigned level α. Thus it consists of α-level local tests for all
non-empty intersection hypotheses H(I) = ∩j∈IHj, where I ⊆ N and N = {1, . . . , n}.

Suppose the intersection hypothesis H(I) contains null hypotheses from k families
with 1 ≤ k ≤ m, i.e.,

I = Ii1 ∪ · · · ∪ Iik , where Iij ⊆ Nij , j = 1, . . . , k,

and Ii1, . . . , Iik are all non-empty. To simplify the notation, we will denote Ii1 , . . . , Iik

by I1, . . . , Ik even though the indices {i1, . . . , ik} may not be sequential starting with
1. This notation will be adopted throughout this paper and will not be mentioned
again.

The local α-level test of H(I) is based on a function of p1(I1), . . . , pk(Ik), called
the mixing function, denoted by φI(p1(I1), . . . , pk(Ik)). The range of this function is
the interval [0, 1] and it satisfies the following properties:

• Property 1: If k = 1 then φI(p1(I1), . . . , pk(Ik)) = p1(I1) and if k > 1 then
φI(p1(I1), . . . , pk(Ik)) ≤ p1(I1).

• Property 2: PH(I){φI(p1(I1), . . . , pk(Ik)) ≤ α} ≤ α.

Then the local test of H(I) is defined as reject H(I) if

φI(p1(I1), . . . , pk(Ik)) ≤ α. (1)

Note that if Ii ⊂ Ni for i = 1, . . . , j − 1 and Ij = Nj for some j ≤ k then the above
rejection rule does not depend on pj+1(Ij+1), . . . , pk(Ik). Property 2 guarantees that
every such local test is an α-level test. Therefore P controls the FWER at level α
because it is a closed procedure.

We will focus on a particular mixing function, called the the Bonferroni mixing
function, which has the following general form for any specified I = I1 ∪ · · · ∪ Ik:

φI(p1(I1), . . . , pk(Ik)) = min

(
p1(I1)

c1(I|α)
, . . . ,

pk(Ik)

ck(I|α)

)
, (2)
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where the ci(I|α) are the coefficients defined recursively as follows: Let ei(Ii|α) be
the error rate function of P i, fi(Ii|α) = ei(Ii|α)/α and c1(I|α) = 1. Then

ci(I|α) = ci−1(I|α)[1 − fi−1(Ii−1|α)] =
i−1∏

j=1

[1 − fj(Ij|α)], i = 2, . . . , k. (3)

The weight ci(I|α) reflects the relative importance of family Fi within the inter-
section hypothesis H(I). The hypotheses from the first family in the intersection
hypothesis are the most important hypotheses within H(I), so the weight on I1 is set
to c1(I|α) = 1. The importance of the other families is determined by computing the
fraction of α carried over from the preceding families within H(I). Specifically, recall-
ing the definition of the error rate function, we see that 1 − fi(Ii|α) is the minimum
fraction of α available for testing the null hypotheses in Fi+1 when the null hypotheses
Hj, j ∈ Ii, are accepted. If Ii is a proper subset of the index set Ni, the separability
condition defined in Section 2.1 ensures that the weight ci+1(I|α) associated to Ii+1

is greater than zero.
Note that if all the error rate functions ei(Ii|α) are proportional to α then all

the fi(Ii|α) as well as the ci(I|α) defined in (3) are independent of α and so may
be denoted simply by fi(Ii) and ci(I), respectively. Hence φ(I) defined in (2) is
independent of α. Then the p-value, p(I), corresponding to test (1) of H(I), simply
equals φ(I). Otherwise, p(I) must be obtained numerically by finding the smallest α
that satisfies the inequality (1).

Since the mixture procedure is a closed procedure, it rejects any individual hy-
pothesis Hj iff all intersection hypotheses H(I) with j ∈ I are rejected by their
respective α-level local tests. Therefore the adjusted p-value for each Hj in F can
be defined as the maximum over the local p-values for the intersection hypotheses
containing this null hypothesis, i.e.,

p̃j = max
I:j∈I

p(I). (4)

The null hypothesis Hj is rejected by the mixture gatekeeping procedure iff p̃j ≤ α.
Since this procedure is based on α-level local tests for all intersection hypotheses in
F , the closure principle guarantees that the mixture gatekeeping procedure controls
the global FWER in the strong sense at level α.

3 Hommel-based gatekeeping procedure

We will use the general method for constructing a mixture procedure to obtain
the Hommel-based gatekeeping procedure, i.e., a mixture procedure consisting of
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Hommel-type procedures as component procedures. However, the basic Hommel pro-
cedure is not separable (see the proof of Proposition 1 in the Appendix). Therefore,
we use its truncated version for the first m−1 component procedures which we discuss
first.

3.1 Truncated Hommel MTP

As in Section 2.1, for notation convenience, we will consider a single family of null hy-
potheses F = {H1, . . . , Hn} with the corresponding marginal (raw) p-values, p1, . . . , pn.
Recall that the Hommel MTP is derived by applying the closure principle in which all
intersection hypotheses H(I) = ∩i∈IHi for I ⊆ N are tested using the Simes (1986)
test. Let k denote the number of elements in I and let p(1) ≤ · · · ≤ p(k) denote the
ordered raw p-values associated with the null hypotheses Hi, i ∈ I. Then the α-level
Simes test rejects H(I) iff

p(i) ≤
iα

k
for at least one i = 1, . . . , k.

The truncated Hommel MTP employs convex combinations of the critical constants
of the original Hommel MTP and the critical constants of the Bonferroni MTP in the
closed procedure. Thus it rejects H(I) at level α iff

p(i) ≤
(

iγ

k
+

1 − γ

n

)
α for at least one i = 1, . . . , k, (5)

where the truncation fraction γ is between 0 and 1. The local p-value for H(I) is
given by

p(I) = min
i=1,...,k

[
p(i)

iγ/k + (1 − γ)/n

]
. (6)

In Proposition 1 of the Appendix, we show that the truncated Hommel MTP satisfies
the separability condition when 0 ≤ γ < 1.

For γ = 0 this MTP reduces to the Bonferroni MTP while for γ = 1 it reduces
to the regular Hommel MTP. Note that truncating the Hommel MTP incurs some
power loss, which is smaller for higher values of γ. As is the case for the regular
Hommel MTP, there is a stepwise shortcut to this truncated Hommel MTP which
can be applied in a step-up manner as shown in the Appendix.

The truncated Hommel MTP controls the FWER in the strong sense under the
same conditions as those necessary for the validity of the Simes test, i.e., when the test
statistics are independent (Simes, 1986) or positively dependent (Sarkar and Chang,
1997 and Sarkar, 1998). The test statistics are said to be positively dependent if
their joint distribution is multivariate totally positive of order two (Karlin 1968).
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For example, the multivariate t-distribution with a common positive correlation sat-
isfies this condition. Thus both the regular and truncated Hommel MTPs control
the FWER in problems involving comparisons of multiple doses of a treatment to a
common control in trials with a balanced design, i.e., all treatment groups have the
same sample size which may be different than the control group sample size.

Upper bound on the error rate function

The following easy-to-compute upper bound on the error rate function of the trun-
cated Hommel MTP is derived in Proposition 1 given in the Appendix:

e(I|α, γ) = (γ + (1 − γ)|I|/n)α if |I| > 0 (7)

and e(I|α, γ) = 0 if |I| = 0 where |I| is the cardinality of the index set I. It is easy
to see that e(I|α, γ) satisfies the conditions listed in section 2.1.

Note that e(I|α, γ) is proportional to α and hence f(I|α, γ) = e(I|α, γ)/α is
independent of α; we therefore denote it by f(I|γ). As noted above, if these upper
bounds are used for the component truncated Hommel MTPs for F1, . . . , Fm−1 then
we can define the p-value, p(I), for every intersection hypothesis H(I), to be simply
equal to φ(I) given by (2) since all the ci(I|α) are independent of α (and hence are
denoted by ci(I)).

An exact expression for the error rate function of the truncated Hommel MTP
under the assumption of independent test statistics is given in the Appendix. We also
explain there why we did not use it in the final implementation of the Hommel-based
gatekeeping procedure.

3.2 Hommel-based gatekeeping procedure

The Hommel-based gatekeeping procedure uses the truncated Hommel MTP with the
truncation fraction 0 ≤ γi < 1 as the component MTP P i (i = 1, . . . , m− 1) and the
regular Hommel MTP as Pm. In clinical trial applications, the truncation fractions
γi need to be prespecified at the planning stage. A high value of γi increases the
power of P i but penalizes the powers of Pj for j > i since their weights cj(I) (here we
are suppressing the dependence of cj(I) on γ1, . . . , γj−1 for notational convenience)
are reduced. Appropriate values for the truncation fractions that maximize a desired
power function can be determined by simulations based on the trial assumptions; see
Section 4 for examples of power functions that can be used for selecting the truncation
fractions. The component procedure Pm is the last one in the sequence and thus it
does not need to be separable. Hence the regular Hommel MTP can be used instead
of the truncated Hommel MTP in the last family to improve the overall power.
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Specifically, for any index set I = I1 ∪ · · ·∪ Ik, the local p-values for the truncated
Hommel MTP are given by

pi(Ii) = min
j∈Ii

[
p(j)

jγi/|Ii| + (1 − γi)/ni

]
, i = 1, . . . , k

where γi = 1 for the regular Hommel MTP which is used for the last family Fm.
Further, using the upper bound on the error rate function (7), we can write

fi(Ii|γi) =
e(Ii|α, γi)

α
=

(
γi +

(1 − γi)|Ii|

ni

)
, i = 1, . . . , k. (8)

As noted before, the fractions fi(Ii|γi) are independent of α. Finally the coefficients
ci(I) used to weigh the local p-values are given by c1(I) = 1 and

ci(I) = ci−1(I)[1 − fi−1(Ii−1|γi−1)], i = 2, . . . , k,

Finally, the p-value, p(I), for testing H(I) is obtained as follows.

• Case 1. If Ii is a proper subset of the index set Ni for all i = 1, . . . , k,

p(I) = φ(I) = min

(
p1(I1)

c1(I)
, . . . ,

p
k
(Ik)

ck(I)

)
.

• Case 2. If Ii is a proper subset of Ni for i = 1, . . . , j − 1 and Ij = Nj for some
j ≤ k,

p(I) = φ(I) = min

(
p1(I1)

c1(I)
, . . . ,

p
j
(Ij)

cj(I)

)
.

3.3 Logical restrictions

An important feature of gatekeeping procedures is that logical restrictions can be
specified to account for clinically relevant logical relationships among the null hy-
potheses of interest. In this paper, logical restrictions will be formulated in terms of
serial and parallel rejection sets that were defined in the context of tree gatekeeping
procedures (Dmitrienko et al., 2007, 2008). Logical restrictions based on serial and
parallel rejection sets can be extended to more general monotone logical restrictions
(Dmitrienko and Tamhane, 2010) but this approach will not be pursued here.

For each null hypothesis Hj in Fi, i = 2, . . . , m, we define the serial and parallel
rejection sets, denoted by Sj and Pj, at least one of which is non-empty and which
contain indices of the null hypotheses from F1, . . . , Fi−1. The null hypothesis Hj

is said to be testable if all null hypotheses in Sj are rejected and at least one null
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hypothesis in Pj is rejected; otherwise Hj is said to be non-testable and is accepted
without a test.

We now show how to account for testability of hypotheses as specified through
their serial and parallel rejection sets. Let H(I), I ⊆ N , be any intersection hypoth-
esis and consider the non-empty index sets associated with F1, . . . , Fk, i.e.,

I = I1 ∪ . . . ∪ Ik, where Ii ⊆ Ni, i = 1, . . . , k.

The index sets I1, . . . , Ik need to be modified to account for the logical restrictions.
The restricted index set I∗

i is defined as the subset of Ii that consists of only the
testable null hypotheses. It is obtained by removing any null hypothesis Hj, j ∈ Ii if
at least one hypothesis from Sj is included in I or all hypotheses from Pj are included
in I.

Going back to the schizophrenia trial example introduced in Section 1, the logical
relationships among the nine null hypotheses of no treatment effect are defined based
on serial rejection sets as

• Family F1: S1, S2 and S3 are empty.

• Family F2: S4 = {1}, S5 = {2} and S6 = {3}.

• Family F3: S7 = {1, 4}, S8 = {2, 5} and S9 = {3, 6}.

To illustrate the definition of restricted index sets, we consider the intersection hy-
pothesis H1 ∩ H4 ∩ H5 ∩ H8, i.e., H(I) with I = {1, 4, 5, 8}. Here I1 = {1}, I2 =
{4, 5}, I3 = {8}. To obtain the restricted index sets, we remove the null hypotheses
that are not testable according to the logical relationships. First, H4 is not testable
since the null hypothesis H1 belonging to S4 is included in I; thus I∗

2 = {5}. Similarly,
H8 is not testable since H5 belonging to S8 is included in I; thus I∗

3 = ∅.
Logical restrictions can be applied to the Hommel-based gatekeeping procedure

by slightly modifying the definition of the local tests for the intersection hypotheses
in F as follows:

• Case 1. If I∗
i is a proper subset of Ni for all i = 1, . . . , k, the intersection

hypothesis H(I) is rejected if

φ(I) = min

(
p1(I1)

c1(I)
,
p2(I

∗
2 )

c2(I)
, . . . ,

pk(I
∗
k)

ck(I)

)
≤ α.

• Case 2. If I∗
i is a proper subset of Ni for all i = 1, . . . , j − 1 and I∗

j = Nj for
some j = 1, . . . , k, then the intersection hypothesis H(I) is rejected if

φ(I) = min

(
p1(I1)

c1(I)
,
p2(I

∗
2 )

c2(I)
, . . . ,

pj(I
∗
j )

cj(I)

)
≤ α.
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• Case 3. If I∗
i is empty for some i = 1, . . . , k, then the term pi(I

∗
i )/ci(I)(I) is

deleted from the formulas given above.

Note that the ci(I), i = 1, . . . , k are not affected by the logical restrictions.
As shown in Dmitrienko and Tamhane (2010), if the component procedures are

consonant (Gabriel, 1969) in the first m− 1 families then this procedure is in confor-
mance with the logical restrictions, i.e., a null hypothesis Hj cannot be rejected if at
least one null hypothesis in Sj or all null hypotheses in Pj are accepted. Neither the
Hommel MTP nor the truncated Hommel MTP is consonant. Therefore, to ensure
conformance with the logical restrictions, the Hommel-based gatekeeping procedure
needs to be enforced as follows. Let p̃j be the adjusted p-value for the null hypothe-
sis Hj in F obtained using the Hommel-based gatekeeping procedure defined above.
Modify the adjusted p-values as

p∗j = max

(
p̃j, max

r∈Sj

p∗r, min
r∈Pj

p∗r

)
.

This modification ensures that the adjusted p-value for Hj is > α if one or more null
hypotheses in Sj or all null hypotheses in Pj have adjusted p-values > α and thus Hj

cannot be rejected. In the schizophrenia trial example, the adjusted p-value for H7 is
re-defined as p∗7 = max (p̃7, p∗1, p∗4) since S7 = {1, 4} and thus H7 cannot be rejected
if either H1 or H4 is accepted.

4 Examples

In this section, we give two examples. The first example considers a clinical trial with
tree gatekeeping restrictions involving parallel rejection sets. This example is used to
compare the Hommel-based gatekeeping procedure to the Bonferroni-based gatekeep-
ing procedure. The second example considers a real clinical trial with tree gatekeeping
restrictions involving serial rejection sets. This example is used to illustrate how to
determine the truncation fractions.

4.1 Hypertension trial

This example is from Dmitrienko et al. (2007). Consider a clinical trial in patients
with hypertension in which the aim is to compare a new anti-hypertension treatment
to an active control with regard to four endpoints:

• Primary endpoint (P): Mean reduction in systolic blood pressure.

• Two secondary endpoints (S1 and S2): Mean reduction in diastolic blood pres-
sure and proportion of patients with controlled systolic/diastolic blood pressure.
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• Tertiary endpoint (T): Average blood pressure based on ambulatory blood pres-
sure monitoring.

Although the primary comparison of this trial is non-inferiority, superiority is
also tested conditionally upon establishing non-inferiority for each endpoint. The
resulting eight null hypotheses, denoted by H1, . . . , H8, are grouped into four families.
The families of null hypotheses, logical relationships and raw two-sided p-values are
shown in Figure 2.

[Insert Figure 2 here]

As can be seen from this figure, the index sets associated with the four families
are

N1 = {1}, N2 = {2, 3, 4}, N3 = {5, 6, 7}, N4 = {8},

and thus n1 = 1, n2 = 3, n3 = 3 and n4 = 1. Also, only parallel rejection sets are
defined in this example (a serial rejection set consisting of only one null hypothesis is
equivalent to a parallel rejection set). These sets are defined as follows:

• Family F1: P1 is empty.

• Family F2: P2 = P3 = P4 = {1}.

• Family F3: P5 = {2}, P6 = {2, 4} and P7 = {4}.

• Family F4: P8 = {6}.

The Hommel-based gatekeeping procedure is constructed based on a mixture of
the truncated Hommel MTPs in F1, F2 and F3 and the regular Hommel MTP in F4.
The truncation fractions 0 ≤ γi < 1, i = 2, 3, must be pre-specified. Note that since
H1 is the only null hypothesis in F1, H1 is simply rejected iff p1 ≤ α and thus γ1 does
not need to be specified. In this example we set γ2 = γ3 = 0.9. In general, the choice
of these values can be investigated through simulations as explained in the second
example.

To compute the adjusted p-values for the eight null hypotheses, local p-values for
the 28 − 1 = 255 intersection hypotheses need to be obtained based on the algorithm
described in Sections 3. As an example, consider the intersection hypothesis H2 ∩
H6 ∩ H7 ∩ H8, i.e., H(I) with I = {2, 6, 7, 8}. The index sets associated with F1

through F4 are given by

I1 = ∅, I2 = {2}, I3 = {6, 7}, I4 = {8}.

Here H6 contained in I3 belongs to P8 and so I∗
4 = ∅. The other I∗

i are the same as
the Ii. From the definition of the local p-values in Section 3.3, the local p-value for
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the intersection hypothesis H(I) is given by

p(I) = min

(
p2(I

∗
2 )

c2(I)
,
p3(I

∗
3 )

c3(I)

)
,

where p2(I
∗
2 ) and p3(I

∗
3 ) are the local p-values for the truncated Hommel MTP defined

in (6):

p2(I
∗
2 ) =

p2

γ2/|I∗
2 | + (1 − γ2)/n2

=
0.008

0.9/1 + 0.1/3
= 0.009,

p3(I
∗
3 ) = min

(
p6

γ3/|I∗
3 | + (1 − γ3)/n3

,
p7

2γ3/|I∗
3 | + (1 − γ3)/n3

)

= min

(
0.010

0.9/2 + 0.1/3
,

0.302

0.9 + 0.1/3

)
= 0.021.

Further, c2(I) = 1 and

c3(I) = c2(I)

[
1 −

(
γ2 +

(1 − γ2)|I2|

n2

)]
= 1 −

(
0.9 +

0.1

3

)
= 0.067.

Thus the local p-value for H(I) is equal to min(0.009, 0.021/0.067) = 0.009.
Once the local p-values for all intersection hypotheses have been computed, the

adjusted p-value for each null hypothesis is obtained from (4). Since the truncated
Hommel MTP is not consonant, a final modification needs to be performed as de-
scribed in Section 3.3 to arrive at the adjusted p-values:

p∗1 = p̃1, p∗2 = max (p̃2, p∗1) , p∗3 = max (p̃3, p∗1) , p∗4 = max (p̃4, p∗1) ,
p∗5 = max (p̃5, p∗2) , p∗6 = max (p̃6, min (p∗2, p∗4)) , p∗7 = max (p̃7, p∗4) ,

p∗8 = max (p̃8, p∗6) .

A similar algorithm can be applied to define the Bonferroni-based gatekeeping proce-
dure, i.e., a mixture of the Bonferroni MTPs in F1, F2 and F3 and the Holm (1979)
MTP in F4.

The adjusted p-values for the eight null hypotheses for the Hommel-based and
Bonferroni-based gatekeeping procedures are given in Table 1. As can be seen from
this table, the Hommel-based gatekeeping procedure rejects five null hypotheses at
the two-sided 0.05 level. In particular, this procedure establishes superiority of the
new treatment to the active control with respect to Endpoint P and non-inferiority
for Endpoints S1, S2 and T. The Bonferroni-based gatekeeping procedure rejects only
four null hypotheses; in particular, it fails to establish non-inferiority for Endpoint S2.
This example demonstrates the power advantage of the Hommel-based gatekeeping
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procedure compared to the gatekeeping procedure based on the Bonferroni MTP.
Note that the Hommel-based gatekeeping procedure is uniformly more powerful than
gatekeeping procedures constructed based on MTPs that are less powerful than the
Hommel MTP, e.g., Holm and Hochberg.

[Insert Table 1 here]

4.2 Schizophrenia trial

Let us return to the schizophrenia trial example introduced in Section 1. This trial
was designed to evaluate the safety and efficacy of three doses of a new treatment
compared to placebo in regard to three endpoints:

• Primary endpoint (P): Mean change from baseline in the Positive and Negative
Syndrome Scale (PANSS) total score at Week 6.

• First key secondary endpoint (S1): Mean change from baseline in the Clinical
Global Impression-Severity (CGI-S) score at Week 6.

• Second key secondary endpoint (S2): Mean change from baseline in the PANSS
total score at Day 4.

The logical relationships among the resulting nine null hypotheses of no treatment
effect are displayed in Figure 1 and explained in Section 3.3.

The truncation fractions 0 ≤ γi < 1, i = 1, 2, determine the balance of power
in the three families of null hypotheses. Consider for example γ1. This parameter
influences power of the hypothesis tests in F1 (Endpoint P tests) and F2 (Endpoint S1
tests). The larger the value of γ1, the higher the power of the Endpoint P tests and the
lower the power of the Endpoint S1 tests. Similar considerations apply to γ2, which
determines the power balance between F2 (Endpoint S1 tests) and F3 (Endpoint S2
tests). In order to select optimum values for the truncation fractions, simulations
can be performed based on the study design assumptions to maximize a pre-defined
power function. In this example, several power functions for various scenarios were
investigated. For the sake of simplicity, we only present here the simulation results
for two power functions under the effect sizes and correlation assumptions shown in
Tables 2 and 3:

• Power function 1: Probability to reject at least two null hypotheses in F1 and
at least one in F2.

• Power function 2: Probability to reject at least two null hypotheses in F1, at
least two in F2 and at least one in F3.
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[Insert Tables 2 and 3 here]

Table 4 presents the power simulation results based on 100,000 simulations for
both power functions and for γ1, γ2 = 0(0.1)0.9 assuming a multivariate normal dis-
tribution for the test statistics and a sample size of 120 patients per arm. As shown
in this table, the first power function is maximized for γ1 = 0.5 and γ2 = 0.9 whereas
the second for γ1 = 0 and γ2 = 0.2. Note that γ1 = 0 implies the use of the Bonfer-
roni MTP in F1. In this clinical trial, the first power function was considered to be a
better fit to the trial objectives and thus γ1 = 0.5 and γ2 = 0.9 were chosen.

[Insert Table 4 here]

Table 5 lists the raw two-sided p-values and adjusted p-values computed using
the Hommel-based gatekeeping procedure with the logical restrictions displayed in
Figure 1. It follows from Table 5 that the procedure rejects the null hypotheses H2

and H5 at the two-sided 0.05 level (Dose M was significantly more effective than
placebo for both Endpoints P and S1).

[Insert Table 5 here]

5 Conclusions

The Hommel-based gatekeeping procedure introduced in this paper is a closed testing
procedure where p-values for each intersection hypothesis H(I) are computed in two
steps. First, the intersection hypothesis is decomposed into its sub-intersections,
H(Ii), where each H(Ii) consists of the hypotheses that belong to both H(I) and Fi.
Next a local p-value, p(Ii), is computed for each H(Ii) using the truncated Hommel
MTP (except for H(Im) which uses the regular Hommel MTP). In the second step,
an overall p-value for the intersection hypothesis is computed using the Bonferroni
mixing function which serves as a bridge between the different families to define a
global closed testing procedure. Logical relations between the hypotheses are taken
into account through the tree-gatekeeping approach which enables us to identify non-
testable hypotheses in each H(Ii) which are then eliminated from that intersection
hypothesis before computing its local p-value.

The separability condition defined in Section 2.1 ensures that some part of α, if any
remaining, can always be carried over to the next family. Since the Hommel MTP is
not separable, we use the truncated Hommel MTP which is separable. The truncation
fraction defined in this manner plays an important role in the algorithm. Locally
within a family, a high value of the truncation fraction provides the best power.
However, it reduces the power in all subsequent families. In order to choose optimum
values for the truncation fractions, simulations based on the trial assumptions should
be performed at the planning stage.
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Serial and parallel logical restrictions can be implemented in the Hommel-based
gatekeeping procedure. This enables clinical trial sponsors to set up complex hierar-
chical structures among clinical endpoints or clinical objectives in general. Further,
well-defined logical restrictions can enhance the power of the procedure.

In this paper an efficient multiplicity adjustment procedure is defined for clinical
trials with hierarchical objectives which controls the global FWER in the strong sense
under the same conditions as required by the Hommel MTP. This method, termed the
Hommel-based gatekeeping procedure, yields more power compared to gatekeeping
procedures derived from other p-value based MTPs proposed in the literature, e.g.,
the Bonferroni, Holm and Hochberg.

SAS code for implementing the Hommel-based gatekeeping procedure can be
downloaded from www.multxpert.com.

Acknowledgment. The authors are grateful to Prof. Sanat Sarkar for providing a
shorter proof of Proposition 2.
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[1] Bauer, P., Röhmel, J., Maurer, W., Hothorn, L. (1998). Testing strategies in
multi-dose experiments including active control. Statistics in Medicine. 17, 2133–
2146.

[2] Dmitrienko, A., Offen, W.W., Westfall, P.H. (2003). Gatekeeping strategies for
clinical trials that do not require all primary effects to be significant. Statistics
in Medicine. 22, 2387–2400.

[3] Dmitrienko, A., Tamhane, A.C., (2009). Gatekeeping procedures in clinical tri-
als. Multiple Testing Problems in Pharmaceutical Statistics. Dmitrienko, A.,
Tamhane, A.C., Bretz, F. (editors). Chapman and Hall/CRC Press, New York.

[4] Dmitrienko, A., Tamhane, A.C. (2010a). Mixtures of multiple testing procedures
for gatekeeping applications in clinical trials. Statistics in Medicine. To appear.

[5] Dmitrienko, A., Tamhane, A.C. (2010b). Theory of mixture gatekeeping proce-
dures for clinical trials. In preparation.

[6] Dmitrienko, A., Tamhane, A., Liu, L. (2008). Mixtures of multiple testing pro-
cedures with gatekeeping applications. Northwestern University. Department of
Industrial Engineering and Management Sciences. Working Paper 08-04. Avail-
able at http://www.iems.northwestern.edu/research/papers.html.



For more information, see http://www.multxpert.com/wiki/Gatekeeping Papers 17

[7] Dmitrienko, A., Tamhane, A.C., Liu, L., Wiens, B.L. (2008). A note on tree
gatekeeping procedures in clinical trials. Statistics in Medicine. 27, 3446–3451.

[8] Dmitrienko, A., Tamhane, A.C., Wiens, B.L. (2008). General multistage gate-
keeping procedures. Biometrical Journal. 50, 667–677.

[9] Dmitrienko, A., Wiens, B.L., Tamhane, A.C., Wang X. (2007). Tree-structured
gatekeeping tests in clinical trials with hierarchically ordered multiple objectives.
Statistics in Medicine. 26, 2465-2478.

[10] Gabriel, K.R. (1969). Simultaneous test procedures—Some theory of multiple
comparisons. Annals of Mathematical Statistics. 40, 224–250.

[11] Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of sig-
nificance. Biometrika. 75, 800–802.

[12] Holm, S. (1979). A simple sequentially rejective multiple test procedure. Multiple
Scandanavian Journal of Statistics. 6, 65–70.

[13] Hochberg, Y., Tamhane, A.C. (1987). Multiple Comparison Procedures. Wiley,
New York.

[14] Hommel, G. (1988). A stagewise rejective multiple test procedure based on a
modified Bonferroni test. Biometrika. 75, 383–386.

[15] Karlin, S. (1968). Total Positivity. Stanford University Press, Stanford.

[16] Marcus, R. Peritz, E., Gabriel, K.R. (1976). On closed testing procedures with
special reference to ordered analysis of variance. Biometrika. 63, 655–660.

[17] Maurer, W., Hothorn, L. A., Lehmacher, W. (1995). Multiple comparisons in
drug clinical trials and preclinical assays: a priori ordered hypotheses. Biometrie
in der Chemisch-in-Pharmazeutischen Industrie. 6. Vollman, J. (editor). Fischer-
Verlag, Stuttgart, 3–18.

[18] Sarkar, S. (2010). Personal communication.

[19] Sarkar, S., Chang, C.K. (1997). Simes’ method for multiple hypothesis testing
with positively dependent test statistics. Journal of the American Statistical As-
sociation. 92, 1601–1608.

[20] Sarkar, S.K. (1998). Some probability inequalities for censored MTP2 random
variables: A proof of the Simes conjecture. The Annals of Statistics. 26, 494–504.



For more information, see http://www.multxpert.com/wiki/Gatekeeping Papers 18

[21] Simes, R.J. (1986). An improved Bonferroni procedure for multiple tests of sig-
nificance. Biometrika. 63, 655–660.

[22] Westfall, P. H., Krishen, A. (2001). Optimally weighted, fixed sequence, and
gatekeeping multiple testing procedures. Journal of Statistical Planning and In-
ference. 99, 25–40.



For more information, see http://www.multxpert.com/wiki/Gatekeeping Papers 19

Appendix

Separability of the truncated Hommel MTP

Proposition 1 The regular Hommel MTP is not separable, but the truncated Hom-
mel MTP is separable for any 0 ≤ γ < 1 if the test statistics are positive dependent.

Proof. Consider n ≥ 2 hypotheses, H1, . . . , Hn. To see that the regular Hommel
MTP is not separable, consider the configuration I = {n}, i.e., only Hn is true, and
H1, . . . , Hn−1 are infinitely false so that p1, . . . , pn−1 → 0 and pn = p(n). Therefore the
probability that Hn is rejected, i.e., e(I|α) with I = {n}, equals α. Thus e(I|α) = α
even though I is a proper subset of N , so the separability condition is violated.

To show the separability of the truncated Hommel MTP, suppose that X1, . . . , Xn

are continuous random variables with common c.d.f. F (x). Let X(1) < . . . < X(n)

denote their ordered values. Further let U(1) < . . . < U(n) denote the ordered values
of the random variables Ui = 1−F (Xi), i = 1, . . . , n. Since the Ui’s are uniform [0, 1]
random variables, from Simes (1986), Sarkar and Chang (1997) and Sarkar (1998) it
follows that for any 0 ≤ y ≤ 1,

P

(
n⋃

i=1

{
U(i) ≤

iy

n

})
≤ y

with an equality if the random variables X1, . . . , Xn are independent and an inequality
if they are positively dependent.

Let F = {H1, . . . , Hn} and N = {1, . . . , n}. Select any nonempty I ⊂ N and
let H(I) = ∩i∈IHi. Further, let |I| = k. Using the simplified notation in which
the indexes in I are numbered sequentially 1, . . . , k, let p(1) < . . . < p(k) denote the
ordered raw p-values associated with Hi, i ∈ I. By the closure principle, an upper
bound on the error rate function of the truncated Hommel MTP is given by

e(I|α, γ) = PH(I)

(
k⋃

i=1

{
p(i) ≤

(
iγ

k
+

1 − γ

n

)
α
})

.

Since i ≥ 1, we have
iγ

k
+

1 − γ

n
≤

i

k

(
γ + (1 − γ)

k

n

)

and thus

e(I|α, γ) ≤ PH(I)

(
k⋃

i=1

{
p(i) ≤

i(γ + (1 − γ)k/n)α

k

})
.

Since the test statistics are assumed to be positive dependent, the Simes inequality
can be applied with U(i) = p(i), i = 1, . . . , k, and thus the right-hand side of this
inequality is no greater than (γ +(1−γ)k/n)α. Since k < n and 0 ≤ γ < 1, it follows
that e(I|α, γ) < α, which implies that the truncated Hommel MTP is separable.
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Generalized Simes Identity and Exact Error Rate Function of

the Truncated Hommel Procedure

Proposition 2 Let U1, . . . , Un be i.i.d. uniform [0, 1] random variables (r.v.’s) and
U(1) < . . . < U(n) be their ordered values. Further let α, β > 0 be fixed constants such
that α + β < 1. Then

P
(
U(i) >

iα

n
+ β, i = 1, . . . , n

)
= (1 − β)n−1[1 − (α + β)]. (9)

For β = 0, this reduces to the Simes (1986) identity.

Proof: Our original proof used the induction method of Simes (1986). The following

proof is due to Sarkar (2010). Note that an alternative way of writing the Simes
identity is as follows: Let X(1) < · · · < X(n) be order statistics from a continuous
c.d.f. F (x). Then

P (X(i) > ci, i = 1, . . . , n) = 1 − α, (10)

where F (ci) = iα/n. Now for X(i) we will substitute U(i) conditioned on U(1) > β.
In that case, the U(i)’s are order statistics from a uniform distribution on [β, 1] with
c.d.f. F (u) = (u − β)/(1 − β). Thus

F (iα/n + β) =
iα

n(1 − β)
. (11)

Also P (U(1) > β)) = (1 − β)n. Thus we can write

P
(
U(i) >

iα

n
+ β, i = 1, . . . , n

)

= (1 − β)nP
(

U(i) >
iα

n
+ β, i = 1, . . . , n

∣∣∣∣U(1) > β
)

= (1 − β)n

(
1 −

α

1 − β

)
(using (10) and (11))

= (1 − β)n[1 − (α + β)],

which is the desired result.
Under the intersection hypothesis H(I) = ∩k

i=1Hi where k = |I|, the exact error
rate function of the truncated Hommel procedure equals

e(I|γ) = 1 − Ph(I)

(
∩k

i=1

{
p(i) >

[
iγ

k
+

1 − γ

n

]})
.
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Substitute n = k = |I|, α = γα and β = (1 − γ)α/n in (9) which gives the following
exact expression for the error rate function of the truncated Hommel MTP:

e(I|α, γ) = 1 −

[
1 −

(1 − γ)α

n

]|I|−1 [
1 −

(
γα +

(1 − γ)α

n

)]
if |I| > 0

and e(I|α, γ) = 0 if |I| = 0.
We did not use this exact expression because of the following reasons.

• This expression assumes independence whereas (7) is general.

• This expression is not proportional to α; as a result, the corresponding f(I|α, γ) =
e(I|α, γ)/α depends on α. As can be seen from (2), this makes the mixing func-
tion φ(I) depend on α and so the local p-value to test H(I) cannot be found
by simply equating it to φ(I) and must be obtained numerically by solving the
inequality (1).

• We compared powers using this exact expression and the upper bound (7) and
found the power gains using the former to be quite marginal.

Step-up algorithm for the truncated Hommel MTP

Consider null hypotheses H1, . . . , Hn and their associated ordered raw p-values p(1) <
. . . < p(n). The truncated Hommel procedure can be applied using the following
algorithm for 0 < γ ≤ 1. For γ = 0, the usual Bonferroni procedure is used.

• Step 1. Accept H(n) and go to the next step if

p(n) >
(
γ +

1 − γ

n

)
α.

Otherwise reject all hypotheses and stop.

• Steps k = 2, . . . , n − 1. Accept H(n−k+1) and go to the next step if

p(n−k+i) >
(

iγ

k
+

1 − γ

n

)
α for i = 1, . . . , k.

Otherwise stop and reject all remaining hypotheses H(i), i = 1, . . . , n − k + 1,
statisfying

p(i) ≤
(

γ

k − 1
+

1 − γ

n

)
α.



For more information, see http://www.multxpert.com/wiki/Gatekeeping Papers 22

• Step n. Accept H(1) if

p(i) >
(

iγ

n
+

1 − γ

n

)
α for i = 1, . . . , n;

otherwise reject it if

p(1) ≤
(

γ

n − 1
+

1 − γ

n

)
α.



For more information, see http://www.multxpert.com/wiki/Gatekeeping Papers 23

Figure 1. Example of a clinical trial with three doses and three endpoints.
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Figure 2. Gatekeeping structure in the hypertension trial example.
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Table 1. Adjusted p-values in the hypertension trial example using the Hommel-based
and Bonferroni-based gatekeeping procedures

Family Null Raw Adjusted p-value
hypothesis p-value Hommel-based† Bonferroni-based

F1 H1 0.001 0.001∗ 0.001∗

F2 H2 0.008 0.017∗ 0.024∗

H3 0.003 0.009∗ 0.009∗

H4 0.026 0.028∗ 0.078
F3 H5 0.208 0.324 0.624

H6 0.010 0.030∗ 0.045∗

H7 0.302 0.324 0.906
F4 H8 0.578 0.578 0.867

∗The asterisk identifies the adjusted p-values that are significant at the 0.05 level.
†The Hommel-based gatekeeping procedure uses γ2 = γ3 = 0.9.
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Table 2. Effect sizes (standardized mean difference) in the schizophrenia trial exam-
ple.

Endpoint Low dose Medium dose High dose
versus placebo versus placebo versus placebo

P 0.3 0.4 0.7
S1 0.2 0.3 0.5
S2 0.1 0.2 0.3
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Table 3. Correlation coefficients ρ between test statistics for the same dose in the
schizophrenia trial example. (Correlation coefficients between test statistics for dif-
ferent doses were set to ρ/2.)

Endpoint P S1 S2
P 1 0.8 0.4
S1 0.8 1 0.3
S2 0.4 0.3 1
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Table 4. Simulated powers (%) of the Hommel-based gatekeeping procedure for two
power functions in the schizophrenia trial example as functions of the truncation
fractions γ1 and γ2. (The highest power entry for each power function is shown in a
box.)

Power function 1†

γ2

γ1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 77.4 77.5 77.7 77.8 77.9 78.0 78.1 78.2 78.3 78.4
0.1 77.6 77.7 77.9 78.0 78.1 78.3 78.4 78.5 78.6 78.7
0.2 77.8 78.0 78.1 78.2 78.4 78.5 78.6 78.7 78.9 79.0
0.3 78.0 78.1 78.3 78.4 78.5 78.7 78.8 78.9 79.0 79.2
0.4 78.1 78.3 78.4 78.5 78.7 78.8 78.9 79.1 79.2 79.3

0.5 78.2 78.3 78.5 78.6 78.7 78.9 79.0 79.1 79.2 79.4
0.6 78.1 78.3 78.4 78.5 78.7 78.8 79.0 79.1 79.2 79.3
0.7 77.8 77.9 78.1 78.3 78.4 78.5 78.7 78.8 78.9 79.0
0.8 77.1 77.3 77.4 77.6 77.7 77.8 78.0 78.1 78.2 78.4
0.9 75.6 75.7 75.8 76.0 76.1 76.3 76.4 76.6 76.7 76.8

Power function 2‡

γ2

γ1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 27.3 27.6 27.7 27.6 27.5 27.0 26.3 25.5 24.3 22.3
0.1 27.0 27.2 27.4 27.4 27.1 26.8 26.3 25.4 24.3 22.4
0.2 26.8 27.0 27.1 27.0 26.9 26.6 26.0 25.3 24.3 22.5
0.3 26.5 26.7 26.8 26.7 26.5 26.3 25.8 25.1 24.1 22.5
0.4 26.3 26.4 26.5 26.4 26.2 25.9 25.5 24.8 23.9 22.4
0.5 26.0 26.1 26.1 26.0 25.9 25.6 25.2 24.6 23.7 22.3
0.6 25.8 25.8 25.8 25.7 25.6 25.3 24.9 24.3 23.5 22.2
0.7 25.5 25.5 25.5 25.4 25.2 25.0 24.6 24.1 23.4 22.1
0.8 25.3 25.3 25.2 25.1 24.9 24.7 24.3 23.8 23.1 21.9
0.9 25.0 25.0 25.0 24.8 24.6 24.4 24.1 23.6 23.0 21.9

†Power function 1: Reject at least two hypotheses in F1 and at least one in F2.
‡Power function 2: Reject at least two hypotheses in F1, at least two in F2 and at
least one in F3.
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Table 5. Adjusted p-values in the schizophrenia trial example obtained from the
Hommel-based gatekeeping procedure with the truncation fractions γ1 = 0.5 and
γ2 = 0.9.

Family Null Raw Adjusted
hypothesis p-value p-value

F1 H1 0.394 0.591
H2 0.011 0.034∗

H3 0.163 0.391
F2 H4 0.365 0.591

H5 0.005 0.034∗

H6 0.169 0.543
F3 H7 0.241 0.591

H8 0.296 0.591
H9 0.263 0.591

The asterisk identifies the adjusted p-values that are significant at the 0.05 level.


