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Summary

The objective of this paper is to give an overview of a relatively new area of multiplic-
ity research that deals with the analysis of hierarchically ordered multiple objectives.
Testing procedures for this problem are known as gatekeeping procedures and have
found a variety of applications in clinical trials. This paper reviews main classes of
these procedures, including serial and parallel gatekeeping procedures, and tree gate-
keeping procedures that account for logical restrictions among multiple objectives.
We focus on procedures based on marginal p-values; extensions to procedures that
exploit the joint distribution of the p-values are also noted. Clinical trial examples
are used to illustrate the procedures and their important properties.

1 Introduction

It is becoming increasingly common to consider designs with multiple endpoints,
analyses and objectives in registration studies because additional information on the
efficacy and safety profiles of an experimental drug helps patients, prescribing physi-
cians and payers better understand its properties. More complicated study designs
give rise to more sophisticated analysis methods. In the area of multiple compar-
isons, these problems motivated research on novel testing strategies for hierarchically
ordered objectives [1, 2, 3, 4].

This paper gives an overview of recent developments in this area with emphasis
on testing strategies for multiple families of analyses. The analyses are often related
to multiple endpoints (both primary and secondary) but can also represent dose-
control comparisons, non-inferiority and superiority tests, or inferences at several time
points. Testing strategies considered here are commonly referred to as gatekeeping
strategies. This terminology highlights the fact that the families of analyses are
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examined sequentially and each one serves as a gatekeeper for the subsequent families.
The sequential testing approach reflects the hierarchical nature of the problem and
improves the power of the more important analyses placed early in the sequence.

The paper is organized as follows. Section 2 introduces the basic concepts about
gatekeeping and establishes notation. Section 3 describes serial gatekeeping procedures
and Section 4 describes parallel gatekeeping procedures. A generalization of the two
approaches, termed the tree gatekeeping approach, is considered in Section 5. Tree
gatekeeping procedures enable clinical trial researchers to construct testing strategies
that combine serial and parallel gatekeepers and also account for logical restrictions
among multiple analyses conducted in a clinical trial. The procedures discussed in
Sections 3–5 are based on marginal p-values. In Section 6 we briefly discuss methods
that exploit the joint distribution of the p-values; these include resampling and normal
theory methods. Section 7 gives a summary and references for downloading the SAS
macros for applying the above procedures. Clinical trial examples are provided to
illustrate key properties of gatekeeping procedures.

2 Basic concepts and notation

This paper assumes that the reader is familiar with the key concepts in the theory of
multiple comparisons. For more information about multiple comparison procedures,
see Hochberg and Tamhane [5]. To introduce the concepts underlying gatekeeping
testing strategies, consider a clinical trial with multiple objectives. Each objective is
associated with a null hypothesis of no treatment effect and each hypothesis is tested
using an appropriate significance test. The objectives are hierarchically ordered, for
example, primary, secondary and tertiary objectives are defined. To account for the
hierarchical structure of the testing problem, the hypotheses are grouped into fam-
ilies. Consider m families denoted by F1, . . . , Fm and let Hi1, . . . , Hini

denote the
hypotheses included in Fi, i = 1, . . . ,m. Further, let n = n1 + . . .+nm denote the to-
tal number of hypotheses. The families are examined sequentially beginning with F1

that corresponds to the most important objectives. Inferences in this family are per-
formed without adjusting for tests of hypotheses in the other families. However, when
significance tests are carried out in the subsequent families, one needs to introduce a
multiplicity adjustment to account for the previously examined families.

Each of the first m− 1 families serves as a gatekeeper for the families placed later
in the sequence. A family is termed a serial gatekeeper if and only if (iff) one must
reject all hypotheses in this family to test subsequent families. Serial gatekeeping
procedures were considered by Maurer et al [1], Bauer et al [2] and Westfall and
Krishen [3]. As an example, in clinical trials for Alzheimer’s disease, two primary
endpoints are generally required: Alzheimer’s Disease Assessment Scale- Cognitive
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Subscale (ADAS-Cog) and Clinical Global Impression of Change (CGIC). The trial
is declared successful only if the treatment effect on both endpoints is significant.
Therefore the primary gatekeeper can be passed only if the null hypotheses for both
the endpoints are rejected.

The concept of a parallel gatekeeper was introduced in Dmitrienko et al [4]. To
pass a parallel gatekeeper, one needs to reject at least one hypothesis in the family.
The acute respiratory distress syndrome (ARDS) trial in [4] provides an example
of a parallel gatekeeper. It had two primary endpoints (mortality and lung function
endpoints). A significant treatment effect with respect to either of these two endpoints
allowed the researcher to test for efficacy with respect to secondary endpoints.

As pointed out in [6], the serial gatekeeping approach is analogous to intersection-
union testing [7] in which the union of several component hypotheses is rejected iff all
of them are rejected. Likewise, the parallel gatekeeping approach is similar to union-
intersection testing [8] in which the intersection of several component hypotheses is
rejected iff at least one of them is rejected.

Gatekeeping procedures are defined as multiple testing procedures that meet the
following conditions:

• Type I error rate control. The familywise error rate (FWER) associated with the
null hypotheses in F1, . . . , Fm is controlled in the strong sense at a prespecified
α level [5].

• Serial and parallel gatekeeping conditions. Consider Fi, i = 1, . . . ,m− 1. If Fi

is a serial gatekeeper, then hypotheses in Fi+1 are tested iff all hypotheses in Fi

are rejected. In other words, if p̃i1, . . . , p̃ini
are multiplicity adjusted p-values in

Fi, then the hypotheses in Fi+1 are tested iff

max(p̃i1, . . . , p̃ini
) ≤ α.

If Fi is a parallel gatekeeper, then hypotheses in Fi+1 are tested iff one or more
hypotheses in Fi are rejected, i.e.,

min(p̃i1, . . . , p̃ini
) ≤ α.

The untested hypotheses are automatically accepted.

• Independence condition. Inferences in Fi, i = 1, . . . ,m− 1, are independent of
the p-values for the hypotheses in Fi+1, . . . , Fm.

The independence condition plays a key role in clinical applications [9, Section
2.7]. It ensures that more important analyses (e.g., analysis of primary endpoints)
will not depend on the results of less important analyses (e.g., analysis of secondary
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endpoints). However, relaxing this condition, when it is consistent with the objectives
of a clinical trial, can result in some power gains, see Chen et al [10], Dmitrienko et
al [9, Section 2.7.3] and Hommel et al [11].

3 Serial gatekeeping procedures

Serial gatekeeping procedures have a straightforward stepwise form that facilitates
their use in multiplicity problems arising in clinical studies. As an example, consider
a trial with two families of hypotheses, F1 and F2, the first of which is a serial
gatekeeper, and suppose the overall FWER is to be controlled at the α-level. Since
it is required that all hypotheses in F1 must be rejected to test the hypotheses in F2,
a powerful procedure to use would be the intersection-union test of Berger [7]. This
test tests each hypothesis in F1 at the α-level. Hypotheses in F2 can be tested using
any multiple test that controls the FWER for that family at the α-level, e.g., the
Holm test [12] or the Hochberg test [13] (assuming that conditions under which the
Hochberg test controls the FWER are satisfied, see Sarkar and Chang [14]).

This simple setting is easily extended to the general case of m families in which the
first m− 1 families are serial gatekeepers. Since any coherent gatekeeping procedure
can be expressed as a closed testing procedure (Grechanovsky and Hochberg [15]),
this serial gatekeeping procedure protects the FWER in the strong sense.

As an illustration, consider a clinical trial in patients with Alzheimer’s disease that
was conducted to evaluate the efficacy and safety of a single dose of an experimental
drug compared to placebo. The primary objective of the trial was to assess the effect
of the experimental drug on two endpoints, P1 (ADAS-Cog) and P2 (CGIC). The
null hypotheses associated with the primary endpoints were included in F1. This
family served as a serial gatekeeper for F2 which contained two hypotheses related to
the secondary endpoints, S1 (a biochemical endpoint) and S2 (an imaging endpoint).
The hypotheses in both families were equally weighted and the FWER was set at
α = 0.05. The raw p-values produced by the primary and secondary tests are shown
in Table 1.

F1 is a serial gatekeeper and the hypotheses corresponding to P1 and P2 are
tested by using an intersection-union test that does not require an adjustment for
multiplicity. The p-values in F1 are significant at the 0.05 level and thus the primary
objective of the trial is met. Since the primary tests are both significant, the testing
procedure passes the serial gatekeeper and can now examine the hypotheses in F2.
The secondary tests are carried out using the Holm test. Comparing the Holm-
adjusted p-values in F2 to 0.05, it is easy to see that only S1 is significant. The
overall conclusion is that the experimental drug is significantly different from placebo
with respect to P1, P2 and S1 at the 0.05 level.
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4 Parallel gatekeeping procedures

The most basic parallel gatekeeping procedure, derived from the Bonferroni test, was
proposed in Dmitrienko et al [4]. This procedure was formulated as a closed testing
procedure and guaranteed strong control of the FWER due to the closed testing prin-
ciple [16]. To satisfy the parallel gatekeeping and independence conditions, a weighted
Bonferroni test was defined for each individual intersection hypothesis in the closed
family induced by the null hypotheses in F1, . . . , Fm. Since the closed family contains
2n − 1 intersection hypotheses, this process is generally computationally intensive;
the decision matrix algorithm [9, Section 2.7] systematizes these computations.

A detailed examination of the underlying decision rule reveals that the Bonferroni
parallel gatekeeping procedure has, in fact, a simple stepwise structure that provides
important insights into the nature of gatekeeping inferences. This stepwise procedure,
proposed in Dmitrienko et al [6], is described below. The procedure is built around
the concept of a rejection gain factor. At the first stage of the procedure, inferences
are performed at the α level, where α is the FWER. At each subsequent stage,
significance tests are carried out at the ρkα level, k = 2, . . . ,m. The rejection gain
factor, 0 ≤ ρk ≤ 1, depends on the number and importance of hypotheses rejected at
the earlier stages.

In mathematical terms, let wi1, . . . , wini
be the weights representing the impor-

tance of null hypotheses in Fi, i = 1, . . . ,m (it is assumed that 0 < wij < 1 and
wi1 + . . .+wini

= 1). The stepwise parallel gatekeeping procedure for testing the null
hypotheses in F1, . . . , Fm is as follows:

• Family Fk, k = 1, . . . ,m−1. Test the null hypotheses using the Bonferroni test
at the ρkα level.

• Family Fm. Test the null hypotheses using the weighted Holm test [12] at the
ρmα level.

The rejection gain factors ρ1, . . . , ρm are given by

ρ1 = 1, ρk =
k−1∏
i=1

 ni∑
j=1

rijwij

 , k = 2, . . . ,m,

where rij = 1 if Hij is rejected and 0 otherwise. For equally weighted hypotheses
(wij = 1/ni), the formula for ρk simplifies to

ρk =
k−1∏
i=1

(
ri
ni

)
, k = 2, . . . ,m,
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where ri =
∑

j rij is the number of rejected hypotheses in Fi. Thus ρk is the product
of the proportions of rejected hypotheses in F1 through Fk−1.

In order to incorporate the rejection gain factors into the decision rule, it is conve-
nient to re-define the adjusted p-values for the hypotheses in the last m− 1 families.
The modified adjusted p-value for Hij, i = 2, . . . ,m, is given by p̃ij/ρi, where p̃ij is
the usual adjusted p-value produced by the multiple test in Fi. After this modifica-
tion, inferences in F2, . . . , Fm can be performed by comparing adjusted p-values to
the prespecified FWER, α.

It follows from the formula for ρk that Fk is tested iff the procedure passed the
preceding gatekeepers, i.e., iff at least one hypothesis is rejected in F1, . . . , Fk−1 and
thus ρk is positive. Further, the combined weight of the null hypotheses rejected
at the earlier stages determines the penalty one has to pay for performing multiple
inferences in Fk. No penalty is involved, i.e., ρk = 1, if the procedure rejects all
hypotheses in F1, . . . , Fk−1. Otherwise, ρk is strictly less than 1 and therefore the
significance level for Fk is adjusted downward.

To illustrate the utility of the stepwise gatekeeping procedure, consider the ARDS
trial example given in [4, Section 4]. The trial was designed to compare a single
dose of an experimental drug to placebo. Two families of endpoints were considered
in this trial. F1 consisted of two hypotheses related to the primary endpoints, P1
(Lung function) and P2 (Mortality), and F2 consisted of two hypotheses related to
the secondary endpoints, S1 (ICU-free days) and S2 (Quality of life). F1 was a parallel
gatekeeper. P1 was deemed more important than P2 in F1 (w11 = 0.9, w12 = 0.1),
but S1 and S2 were equally weighted (w21 = 0.5, w22 = 0.5). The raw p-values for
the treatment comparisons are displayed in Table 2. The FWER is to be controlled
at α = 0.05.

To apply the stepwise parallel gatekeeping procedure, one first considers the ad-
justed p-values produced by the weighted Bonferroni test and Holm test for the null
hypotheses in F1 and F2, respectively. Since ρ1 = 1, the primary hypotheses are tested
at the full α = 0.05 level. The P2 comparison is significant at this level whereas the
P1 comparison is not. Therefore, the rejection gain factor for the secondary family
is ρ2 = w12 = 0.1 and the adjusted p-values for S1 and S2 are 0.026/ρ2 = 0.260 and
0.004/ρ2 = 0.040, respectively. It is clear that only the hypothesis concerning S2 is
rejected. These conclusions are identical to those based on the parallel gatekeeping
procedure that was derived using the closed testing principle (compare to Table III,
Scenario 3 of [4]).

Generalizations of the Bonferroni-based parallel gatekeeping procedure were stud-
ied by Dmitrienko et al [17] and Hommel et al [11]. Dmitrienko et al discussed
procedures with an extended parallel gatekeeping property. These procedures are de-
rived from the fallback test [18] and enable researchers to carry over a predetermined
fraction of the Type I error rate to the next family even if no hypotheses are rejected
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in the previous family. Dmitrienko et al demonstrated how this testing approach can
be used in dose-finding studies with multiple endpoints. Hommel et al described a
general family of Bonferroni-based stepwise testing procedures and applications to
clinical trials with several dose-control comparisons and outcome variables.

The stepwise testing framework described above relies on the basic Bonferroni test
in the first m − 1 families and it is natural to ask whether alternative tests can be
utilized to improve the power for the more important objectives. One can consider
more powerful Bonferroni-based tests (e.g., the truncated Holm test defined below)
and Simes-based tests (e.g., the Hochberg test). These alternative approaches are
described below. Parallel gatekeeping procedures based on resampling and parametric
tests (e.g., the Dunnett test [19]) are described in Section 6.

The most straightforward extension of the Bonferroni gatekeeping procedure relies
on replacing the Bonferroni test at the first m− 1 stages with a more powerful test.
The Holm test cannot be used for this purpose because it “spends” all of the Type
I error rate at each stage [9, Section 2.7.5]. As an alternative, one can consider the
truncated Holm test based on a convex combination of the Bonferroni and Holm
tests. Consider, for the sake of simplicity, the case of equally weighted hypotheses
(wij = 1/ni). Let pi(1) < . . . < pi(ni) denote the ordered p-values in Fi. The truncated
Holm test rejects the hypothesis Hi(k) corresponding to pi(k), k = 1, . . . , ni, if

pi(j) ≤ α

[
1− γi
ni

+
γi

ni − j + 1

]
, j = 1, . . . , k,

where 0 ≤ γi < 1 is the mixing proportion for Stage i between the Bonferroni and
Holm tests (it is analogous to the relative importance factor defined in [9, Section
2.7.5]). When γi = 0, this test simplifies to the Bonferroni test and, when γi = 1, it
is equivalent to the regular Holm test. The power of the truncated Holm test is an
increasing function of γi.

A parallel gatekeeping procedure based on the truncated Holm test was con-
structed in [9, Section 2.7.5] and can be illustrated using the ARDS trial example.
Table 3 displays the results produced by the gatekeeping procedure based on the
truncated Holm test with γ1 = 0, 0.5 and 0.9. When γ1 = 0, this procedure is equiva-
lent to the Bonferroni-based procedure and thus the conclusions are identical to those
presented in Table 2. Setting γ1 = 0.5 leads to a non-significant outcome for the S2
endpoint. However, with γ1 = 0.9, the treatment differences become significant for
all primary and secondary endpoints.

In general, γ1 can be thought of as a leverage factor that determines the power of
the significance tests in F1 relative to the power of the remaining tests. The power of
the tests in F1 is an increasing function of γ1. The power of the tests in F2, . . . , Fm can
increase or decrease with increasing γ1 depending on the number of true hypotheses
in all families as well as the effect sizes for false hypotheses.
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Parallel gatekeeping procedures based on the Simes test [20] were studied by sev-
eral authors (this work was done under the assumption that conditions under which
the Simes and related tests control the FWER are met [14]). The first attempt to
construct a Simes-based parallel gatekeeping procedure was made in [4]. It was based
on a straightforward extension of the principles underlying the Bonferroni-based pro-
cedure and was subsequently shown to have certain undesirable properties such as
the violation of the independence condition (see [10] and [9, Section 2.7.3]). Quan
et al [21] proposed parallel gatekeeping procedures that relied on a Bonferroni-type
modification of the Hochberg test to achieve control of the Type I error rate. An-
other Simes-based parallel gatekeeping procedure was introduced by Chen et al [10];
however, this procedure does not satisfy the independence condition. More recently,
Wang [22] developed a gatekeeping method based on a combination of the Bonferroni
and Simes tests that satisfies the three conditions given in Section 2. Further research
is required to improve the power advantage of this procedure over the Bonferroni par-
allel gatekeeping procedure.

5 Tree gatekeeping procedures

The gatekeeping procedures described in Sections 3 and 4 are based on the assumption
that ordered objectives have a simple “one-dimensional” form defined by a sequence
of serial or parallel gatekeepers. Testing problems encountered in clinical trials with
multiple objectives often exhibit a more complicated “multi-dimensional” structure
with one dimension corresponding to multiple outcome variables, another to multiple
doses and yet another to multiple analysis objectives (e.g., noninferiority and supe-
riority tests). In addition, one may need to account for logical relationships among
the multiple comparisons, for example, require that secondary tests in dose-finding
studies with multiple endpoints be restricted to the doses at which the primary end-
points are significant. In order to develop testing procedures for complex problems
of this kind, the standard gatekeeping framework needs to be extended. Dmitrienko
et al [23] proposed a testing approach, termed the tree gatekeeping approach, that
supports decision trees with multiple branches.

The tree gatekeeping approach assumes the setting described in Section 2 that
involves m families of hypotheses, F1, . . . , Fm. The families are tested sequentially as
described below. The algorithm begins with the hypotheses in F1 which are tested
using an appropriate test with local (for F1) level α. When the other families are ex-
amined, one first determines whether each particular hypothesis is testable. Consider,
for instance, Fi, i = 2, . . . ,m, and select a hypothesis, say, Hij, j = 1, . . . , ni. This
hypothesis is tested by the tree gatekeeping procedure iff it meets the following two
conditions:
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• All hypotheses from a prespecified subset of hypotheses in F1, . . . , Fi−1, denoted
by RS

ij, are rejected. This subset is referred to as the serial rejection set for Hij.

• One or more hypothesis from a prespecified subset of hypotheses in F1, . . . , Fi−1,
denoted by RP

ij, are rejected. This subset is referred to as the parallel rejection
set for Hij.

If either condition is not satisfied, Hij is automatically accepted. Otherwise, it
is tested with an appropriate adjustment for multiplicity. The other hypotheses are
tested in a similar manner.

Using the principle of closed testing, Dmitrienko et al [23] developed Bonferroni-
based tree gatekeeping procedures. These procedures can be applied to a wide vari-
ety of testing problems encountered in clinical trial applications. Examples consid-
ered in [23] include clinical trials with (1) ordered primary/secondary endpoints and
noninferiority/superiority assessments, and (2) ordered primary/secondary endpoints
and multiple dose levels. Another important application of the tree gatekeeping
approach involves testing problems with several treatment groups and noninferior-
ity/superiority assessments. This application is described below.

Suppose a parallel-group trial is conducted to compare a new formulation of an
insulin therapy (Formulation A) to a standard formulation (Formulation B) in pa-
tients with Type 2 diabetes. Patients are allocated to three treatment groups (A,
B and A+B) and the efficacy analysis is based on the mean change in hemoglobin
A1c from baseline to a 6-month endpoint. The three pairwise comparisons among
the treatment groups are ordered according to their clinical relevance. The primary
objective of the study is to compare the new formulation to the standard one (A ver-
sus B). After that, the combination is compared to the standard formulation (A+B
versus B) and to the new formulation (A+B versus A). Each comparison begins with
a noninferiority test followed by a superiority test if noninferiority is established.

According to this strategy, the six null hypotheses are grouped into four families:

• Family F1 = {H1}, where H1 states that A is inferior to B.

• Family F2 = {H2, H3}, where H2 states that A is not superior to B and H3

states that A+B is inferior to B.

• Family F3 = {H4, H5}, where H4 states that A+B is not superior to B and H5

states that A+B is inferior to A.

• Family F4 = {H6}, where H6 states that A+B is not superior to A.

The four families are tested as shown in the decision tree (Figure 1). To set up a
tree gatekeeping procedure, one needs to define serial and parallel rejection sets for
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the hypotheses in F2, F3 and F4. In this case, the parallel rejection sets can be set to
be empty and serial rejection sets defined as shown in Table 4. This table also displays
the raw p-values for each analysis and multiplicity adjusted p-values produced by the
tree gatekeeping procedure based on the Bonferroni test.

The procedure begins with the single hypothesis in F1 and rejects it at the 0.05
level. Due to this rejection, the procedure passes the first gatekeeper and proceeds
to testing the hypotheses H2 and H3 in F2. The two hypotheses are tested using the
Bonferroni test and are both rejected at the 0.05 level. Note that F3 depends on H3

and thus the next step is to examine the hypotheses H4 and H5. These hypotheses are
again tested using the Bonferroni test, H4 is found false but H5 is accepted. Since H5

is in the serial rejection set of H6, testing stops and H6 is accepted without testing.
The overall conclusion is that Formulation A is superior to Formulation B and the
combination of A and B is superior to B.

The computation of adjusted p-values in this example is performed using the closed
testing procedure proposed in Dmitrienko et al [23]. The computational algorithm
relies on a complete enumeration of all intersections in the closed family but in some
cases it assumes a simple sequential form. For example, the adjusted p-value for H4 is
the maximum of the Bonferroni p-value for H4 (2p4 = 0.036) and the largest adjusted
p-value associated with the hypotheses in F1 and F2 (0.046). The maximum is taken
in this calculation to account for the sequential nature of this procedure.

6 Parallel gatekeeping procedures based on joint

distributions of test statistics

Further improvements of the Bonferroni-based gatekeeping procedure discussed in
Section 4 can be achieved by considering tests that account for the joint distribution
of the test statistics associated with the null hypotheses in F1, . . . , Fm. A resampling-
based approach to constructing parallel gatekeeping procedures was proposed in [4]
(see also [9, Section 2.7.4]). This approach relies on the closed testing principle and
replaces the potentially conservative Bonferroni test for each intersection hypothesis
in the closed family with parametric or nonparametric resampling tests described in
Westfall and Young [24] (assuming that resampling-based procedures preserve the
FWER, e.g., the subset pivotality condition is met). The resulting procedure takes
into account the correlations among the test statistics within each family and across
families. For an application of a resampling-based gatekeeping procedure to the anal-
ysis of multiple dose-placebo comparisons, see [4, Section 5]. In this example, the
use of a parametric resampling procedure led to uniformly smaller adjusted p-values
compared to the Bonferroni-based gatekeeping procedure.

In dose-finding studies, instead of using the Bonferroni test for comparing doses
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to a placebo control, one can use the more powerful Dunnett test [19] if the normality
assumption is satisfied. This was done in Dmitrienko et al [25]. The Dunnett test
used there accounted for not only the correlations among the dose-placebo contrasts,
but also between the endpoints. It was shown via simulations that the Dunnett-based
gatekeeping procedure is more powerful than the Bonferroni-based procedure. The
power advantage of the parametric procedure increased with increasing correlations
among the endpoints, especially in the case when all primary dose-control comparisons
were significant.

7 Summary

This paper reviewed developments in the growing area of multiple comparison re-
search, namely, multiple testing procedures for hierarchically ordered objectives. The
gatekeeping framework described in the paper provides clinical trial researchers with
useful tools for managing multiplicity in clinical trials that guarantee strong control
of the FWER. We described two basic approaches to gatekeeping, namely serial and
parallel gatekeeping, and a unified approach of tree gatekeeping.

The gatekeeping procedures discussed in the paper can be carried out using a num-
ber of SAS macros freely available on the Internet. The Bonferroni-based gatekeeping
procedure described in Section 4 can be carried out using the %Gatekeeper macro
available at http://biopharmnet.com/books/book40005.html. The tree gatekeep-
ing approach (Section 5) is implemented in the %TreeGatekeeper macro that can be
downloaded from http://www.biopharmnet.com/code.
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Table 1. Serial gatekeeping procedure in the Alzheimer’s disease trial.

Family Endpoint Weight Raw Multiple Adjusted Test
p-value test p-value outcome

F1 P1 0.5 0.023 IU 0.023 S
F1 P2 0.5 0.018 IU 0.018 S
F2 S1 0.5 0.014 Holm 0.028 S
F2 S2 0.5 0.106 Holm 0.106 NS

Primary endpoints, P1 (ADAS-Cog) and P2 (CGIC). Secondary endpoints, S1 (a
biochemical endpoint) and S2 (an imaging endpoint). Multiple test, IU (intersection-
union test) and Holm (Holm test). The adjusted p-values are identical to the raw
p-values in F1 and are produced by the Holm test in F2. Test outcome, S (Significant
at the 0.05 level), NS (Not significant at the 0.05 level).
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Table 2. Stepwise parallel gatekeeping procedure based on the Bonferroni test in the
ARDS trial.

Family Endpoint Weight Raw Rejection Multiple Adjusted Test
p-value gain factor test p-value outcome

F1 P1 0.9 0.048 1 Bonf 0.053 NS
F1 P2 0.1 0.003 1 Bonf 0.030 S
F2 S1 0.5 0.026 0.1 Holm 0.260 NS
F2 S2 0.5 0.002 0.1 Holm 0.040 S

Primary endpoints, P1 (Lung function) and P2 (Mortality). Secondary endpoints,
S1 (ICU-free days) and S2 (Quality of life). Multiple test, Bonf (weighted Bonferroni
test) and Holm (Holm test). The adjusted p-values are produced by the weighted
Bonferroni test (for F1) and Holm test (for F2). Test outcome, S (Significant at the
0.05 level), NS (Not significant at the 0.05 level).
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Table 3. Parallel gatekeeping procedure based on the truncated Holm test in the
ARDS trial.

Family Endpoint Weight Raw Test outcome
p-value γ1 = 0 γ1 = 0.5 γ1 = 0.9

F1 P1 0.9 0.048 NS NS S
F1 P2 0.1 0.003 S S S
F2 S1 0.5 0.026 NS NS S
F2 S2 0.5 0.002 S NS S

Primary endpoints, P1 (Lung function) and P2 (Mortality). Secondary endpoints,
S1 (ICU-free days) and S2 (Quality of life). Test outcome, S (Significant at the 0.05
level) and NS (Non-significant at the 0.05 level).



For more information, see http://www.multxpert.com/wiki/Gatekeeping Papers 17

Figure 1. Decision tree in the Type 2 diabetes trial.
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Table 4. Tree gatekeeping procedure based on the Bonferroni test in the Type 2
diabetes trial.

Family Hypothesis Serial Raw Adjusted Test
rejection set p-value p-value outcome

F1 H1 NA 0.011 0.011 S
F2 H2 {H1} 0.023 0.046 S
F2 H3 {H1} 0.006 0.012 S
F3 H4 {H3} 0.018 0.046 S
F3 H5 {H3} 0.042 0.084 NS
F4 H6 {H5} 0.088 0.088 NS

The parallel rejection sets are empty. The adjusted p-values are produced by the
tree gatekeeping procedure. Test outcome, S (Significant at the 0.05 level) and NS
(Non-significant at the 0.05 level).


