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Abstract

The paper introduces a general approach to constructing mixture-based
gatekeeping procedures in multiplicity problems with two or more families of
hypotheses. Mixture procedures serve as extensions of and overcome limita-
tions of some previous gatekeeping approaches such as parallel gatekeeping and
tree-structured gatekeeping. This paper offers a general theory of mixture pro-
cedures constructed from nonparametric (p-value based) or parametric (normal
theory based) procedures and studies their properties. It is also shown that the
mixture procedure for parallel gatekeeping is equivalent to to the multistage
gatekeeping procedure. A clinical trial example is used to illustrate the mix-
ture approach and implementation of mixture procedures.

1 Introduction

Gatekeeping procedures address the problems of testing logically related hypotheses
that are grouped into hierarchically ordered families. Such problems arise in clinical
trials involving multiple endpoints, noninferiority/superiority tests, multiple doses,
etc. This has been an active area of research in the last decade. Much of this work
deals with serial gatekeeping (Maurer, Hothorn and Lehmacher, 1995; Bauer et al.,
1998; Westfall and Krishen, 2001) and parallel gatekeeping (Dmitrienko, Offen and
Westfall, 2003; Dmitrienko, Tamhane and Wiens, 2008), and their generalization
to tree-structured gatekeeping (Dmitrienko et al., 2007; Dmitrienko et al., 2008a).
However, this generalization does not cover all types of logical restrictions that are
employed in clinical trial applications. Furthermore, the tree-structured gatekeeping
approach is designed to use only the Bonferroni procedure for testing the intersection
hypotheses within the closed testing framework (Marcus, Peritz and Gabriel 1976),
so there is a potential for improving its power.
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Dmitrienko et al. (2008b) proposed a general multistage (or stepwise) parallel
gatekeeping procedure that uses more powerful (than Bonferroni) component multi-
ple testing procedures (MTPs) for the individual families. Dmitrienko and Tamhane
(2011) introduced an alternative procedure, called the mixture procedure, based on
the closure principle. This procedure not only allows the use of more powerful com-
ponent MTPs but it can also deal with more general logical restrictions than the
tree-structured gatekeeping approach allows. In Dmitrienko and Tamhane (2011)
we restricted to only two families of hypotheses and the exposition of the ideas was
mainly through examples. In this paper we extend the mixture procedures to arbi-
trary number of families; in addition we provide their general theory and study their
properties. Several examples are given to illustrate the mixture procedures.

The outline of the paper is as follows. Section 2 introduces some background and
notation. Section 3 reviews the multistage parallel gatekeeping procedures. Section 4
defines the basic mixture procedure for parallel gatekeeping and shows that it is
equivalent to the multistage procedure. Section 5 extends the mixture framework to
general gatekeeping restrictions through restriction functions. Section 6 introduces
a clinical trial example to illustrate mixture procedures with general gatekeeping
restrictions. Calculations for this example were done by using R programs available
at http://multxpert.com/. Finally, Section 7 gives concluding remarks. Proofs of the
theoretical results are given in the Appendix.

2 Background and notation

Consider the problem of testing n ≥ 2 hypotheses, H1, . . . , Hn, which are grouped
into m ≥ 2 ordered families, Fj = {Hi : i ∈ Nj}, where N1 = {1, . . . , n1}, Nj =
{n1+. . .+nj−1+1, . . . , n1+. . .+nj} are the index sets of the hypotheses (j = 2, . . . , m)
and

∑m

j=1 nj = n. Let F =
⋃m

j=1 Fj be the overall family and N =
⋃m

j=1Nj =
{1, . . . , n} be the corresponding index set of all hypotheses. In the simple setting
of serial or parallel gatekeeping, family Fj serves as a gatekeeper for family Fj+1

(j = 1, . . . , m− 1). If the gatekeeper Fj is not passed then all hypotheses in families
Fk for k > j are regarded as non-testable, i.e., they are accepted without tests, while
if the gatekeeper Fj is passed then the hypotheses in family Fj+1 are regarded as
testable, i.e., they are tested to decide whether to accept or reject them. In serial
gatekeeping, the condition for passing the gatekeeper is rejection of all hypotheses in
the gatekeeper, while in parallel gatekeeping, the condition is rejection of at least one
hypothesis in the gatekeeper. Since the testability of the hypotheses in later families
is conditioned on rejection of the hypotheses in earlier families, the hypotheses are
said to have logical restrictions.

We assume that all procedures considered in this paper satisfy the strong family-
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wise error rate (FWER) control requirement (Hochberg and Tamhane 1987):

FWER = P (Reject at least one true hypothesis Hi, i ∈ N) ≤ α (1)

for a specified α for any combination of the true and false hypotheses in the overall
family F .

3 Multistage procedures for parallel gatekeeping

Dmitrienko et al. (2008b) proposed a method for constructing multistage parallel
gatekeeping procedures based on the concepts of error rate functions and separable
procedures. To define these two concepts, consider a single family F = {H1, . . . , Hn}
with n ≥ 2 hypotheses and for any nonempty subset I ⊆ N = {1, . . . , n}, let H(I) =⋂

i∈I Hi denote an intersection hypothesis. Then the error rate function of an MTP,
denoted by P, for a fixed level α, is defined as

e(I|α) = supP{Reject at least one Hi, i ∈ I|H(I)}, (2)

where the supremum is taken over the parameter space in which the Hi, i ∈ I
are true and the Hi, i 6∈ I are false. Thus e(I|α) is the FWER of P viewed as a
function of I for fixed α. The error rate function can always be monotonized so that
e(I|α) ≤ e(J |α) for I ⊆ J if it is not already monotonic. In addition, e(∅|α) = 0 and
we can always set e(N |α) = α.

Usually, an exact expression for e(I|α) is not available or depends upon unknown
correlations among the test statistics. So we use an easy-to-compute upper bound and
treat it as the true error rate function. For example, for the Bonferroni procedure,
we have e(I|α) = (|I|/n)α where |I| is the cardinality of index set I.

A procedure is said to be separable if its error rate function satisfies that e(I|α) < α
for all proper subsets I ⊂ N . The Bonferroni procedure is clearly separable and the
single-step Dunnett procedure (Dunnett, 1955) can also be shown to be separable. On
the other hand, most p-value based stepwise procedures, e.g., Holm (1979), Hochberg
(1988), Hommel (1988), and fallback (Wiens, 2003; Wiens and Dmitrienko, 2005),
are not separable. Similarly, the stepwise Dunnett procedures (Naik, 1975; Dunnett
and Tamhane, 1992) are not separable.

It is clear from the definition of separable procedures that, when viewed as closed
procedures (Marcus et al., 1976), they do not test all intersection hypotheses at
full α, i.e., they are not α-exhaustive. Therefore they are conservative with respect
to the corresponding non-separable procedures. Non-separable procedures can be
thought of as “greedy” procedures in the sense that a positive significance level is
carried forward to the next family only when all hypotheses in a given family are
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rejected. Thus, non-separable procedures can be used only for serial gatekeeping.
Separable procedures, on the other hand, support more flexible rules for transferring
significance levels along a sequence of families. Specifically, separable procedures
allow a positive significance level to be carried forward to the next family provided
at least one hypothesis is rejected in the current family, which is consistent with the
parallel gatekeeping approach considered in this paper.

Non-separable procedures can be made separable by applying them using convex
combinations of their critical constants with those of the corresponding separable
procedures. For example, the critical constants of the Holm, Hochberg, Hommel or
fallback procedures can be combined with those of the Bonferroni procedure and the
critical constants of the stepwise Dunnett procedures can be combined with those of
the single-step Dunnett procedure. We refer to such hybrid procedures as truncated
procedures. They are less powerful than the original non-separable procedures but are
more powerful than the corresponding separable procedures (Bonferroni or Dunnett).
As an example, let p1, . . . , pn denote the raw p-values of the hypotheses H1, . . . , Hn.
Further let p(1) ≤ · · · ≤ p(n) denote their ordered values and let H(1), . . . , H(n) denote
the respective ordered hypotheses. Fix γ ∈ [0, 1], called the truncation fraction. Then
the truncated Holm procedure rejects the hypothesis H(i) if and only if (iff)

p(j) ≤

[
γ

n− j + 1
+

1− γ

n

]
α for j = 1, . . . , i.

Note that for γ = 0 this procedure reduces to the Bonferroni procedure and for γ = 1,
it reduces to the original Holm procedure. It was shown in Dmitrienko et al. (2008b)
that an upper bound on the error rate function of this procedure is given by

e(I|α) =

{
0 if |I| = 0,
(γ + (1− γ)|I|/n)α if |I| > 0.

(3)

It is easy to see that this procedure is separable iff γ < 1.
A brief discussion about the choice of γ is in order. As γ is increased for a given

family, the power for that family increases often at the expense of the power for the
next family. Therefore a proper balance must be struck between these two powers.
An optimal choice of γ can be made if a clinically relevant optimality criterion is
specified as illustrated in Brechenmacher et al. (2011), Millen and Dmitrienko (2011)
and Dmitrienko et al. (2011b).

It should be noted that there are many possible approaches to constructing trun-
cated procedures, e.g., instead of truncating critical points as we have done above,
one could truncate α at which the closure procedure tests each intersection hypothe-
sis. We adopted the present approach because it gives simple testing algorithms and
simple formulas for error rate functions.
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Returning to the gatekeeping problem of testing n hypotheses grouped into m
families, the method for constructing multistage parallel gatekeeping procedures pro-
posed in Dmitrienko et al. (2008b) assumes that component MTPs P1, . . . ,Pm are
specified for the families F1, . . . , Fm, respectively, such that P1, . . . ,Pm−1 are separa-
ble while Pm may be non-separable. Denote the error rate function of P j by ej(Ij |α)
where Ij ⊆ Nj (j = 1, . . . , m). The multistage procedure operates as follows.

• Step 1: Test the hypotheses in F1 at level α1 = α using P1. Let A1 ⊆ N1 be the
index set of the accepted hypotheses and let α2 = α1 − e1(A1|α1). If A1 = N1,
i.e., if all hypotheses in F1 are accepted then e1(A1|α1) = α1 and so α2 = 0, in
which case stop testing and accept all remaining hypotheses. Otherwise go to
Step 2.

• Step j (2 ≤ j ≤ m− 1): Test the hypotheses in Fj at level αj using P j. Let

αj+1 = αj − ej(Aj|αj), (2 ≤ j ≤ m− 1), (4)

where Aj ⊆ Nj is the index set of the accepted hypotheses in Fj . If all hypothe-
ses in Fj are accepted using Pj , i.e., if Aj = Nj, then ej(Aj |αj) = αj and so
αj+1 = 0, in which case stop testing and accept all hypotheses in Fk for k > j.
Otherwise go to Step j + 1.

• Step m: Test the hypotheses in Fm at level αm using Pm and stop testing.

Example 1: Suppose that P1, . . . ,Pm−1 are Bonferroni procedures and Pm is any
non-separable procedure. In Dmitrienko et al. (2008b) we showed that

αk+1 = α

k∏

j=1

(
rj
nj

)
, k = 1, . . . , m− 1,

where rj is the number of rejected hypotheses from Fj . Note that if rj = 0 then
αk = 0 for all k > j and so all hypotheses in Fk for k > j are non-testable thus
satisfying the parallel gatekeeping condition.

More generally, let ej(Ij |α) be the error rate function of P j. Further let fj(Ij|α) =
ej(Ij|α)/α denote the error rate fraction (the error rate function expressed as a frac-
tion of α). Then we have α1 = α and

αk+1 = α

k∏

j=1

[1− fj(Ij|α)] (1 ≤ k ≤ m− 1). (5)

We will use this equation in the sequel. �



For more information, see http://www.multxpert.com/wiki/Gatekeeping Papers 6

Equation (4) uses what we call as the “use it or lose it” principle. In other
words, if the α is not used to reject a hypothesis then it is lost, while if the hypoth-
esis is rejected then it can be carried forward to test subsequent hypotheses in the
sequence. This same principle underlies the fixed-sequence (Maurer et al., 1995), fall-
back (Wiens, 2003; Wiens and Dmitrienko, 2005) and chain (Millen and Dmitrienko,
2011) procedures in problems with a priori ordered hypotheses.

Serial and parallel gatekeeping paradigms were extended in tree-structured gate-
keeping (Dmitrienko et al., 2007) by defining serial and parallel rejection sets for each
hypothesis Hi (denoted by RS

i and RP
i , respectively). Specifically, for any hypothesis

Hi ∈ Fj (j > 1), RS
i and RP

i are the sets of hypotheses belonging to Fk for k < j
such that Hi is testable iff all hypotheses in RS

i and at least one hypothesis in RP
i

are rejected. Clearly, if RS
i = Fj−1 and RP

i = ∅ for all Hi ∈ Fj (j > 1) then we have
serial gatekeeping, while if RP

i = Fj−1 and RS
i = ∅ for all Hi ∈ Fj , j > 1 then we

have parallel gatekeeping.

4 Mixture procedures for parallel gatekeeping

In this section we define a very general method for constructing multiple testing
procedures, termed the mixture method. As shown in this paper, the mixture method
can be applied to build a broad class of gatekeeping procedures for problems with
several families of hypotheses. This includes gatekeeping procedures developed in
recent publications as well as some new gatekeeping procedures.

Denote the closure of the family Fj by F j, being the set of all non-empty in-
tersections of the hypotheses in Fj . Let P1, . . . ,Pm denote the component MTPs
for families F1, . . . , Fm, respectively. We assume that each P j is a closed procedure
which controls the FWER within Fj at any preassigned level α and P1, . . . ,Pm−1 are
separable. Here Pj being closed means that there exist α-level tests (called the local
tests) for all intersection hypotheses H(Ij) ∈ F j such that Pj rejects any hypothesis
Hi ∈ Fj at level α iff the local tests reject all H(Ij) ∈ F j at level α for all Ij containing
i. Let pj(Ij) denote the p-value (called the local p-value) associated with the local
test of the intersection hypothesis H(Ij). For example, if P j is the Holm procedure
then the local test of each H(Ij) is the Bonferroni test and

pj(Ij) = |Ij|min
i∈Ij

(pi). (6)

A mixture procedure composed of component procedures P1, . . . ,Pm and denoted
by P is a closed procedure for testing all hypotheses in F =

⋃m

j=1 Fj . Let F denote
the closed family of non-empty intersection hypotheses in all m families. Since P is
a closed procedure, we need to define the local tests for all H(I) ∈ F .
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First we define the notion of amixing function. Consider any index set I consisting
of the union of s (1 ≤ s ≤ m) nonempty subsets, Ij1, . . . , Ijs (1 ≤ j1 < · · · < js ≤ m).
To avoid double subscripts and keep the notation simple, we will relabel these subsets
as I1, . . . , Is keeping in mind that they are not necessarily the first s consecutive
index subsets. Let H(I) =

⋂s

j=1H(Ij). A mixing function φI(p1(I1), . . . , ps(Is)) is a
function on the interval [0, 1] which satisfies the following properties.

• Property 1: For s = 1, φI(p1(I1)) = p1(I1) and for s > 1, φI(p1(I1), . . . , ps(Is)) ≤
p1(I1).

• Property 2: P{φI(p1(I1), . . . , ps(Is)) ≤ α} ≤ α.

It can be shown that Property 1 ensures independence for F1 (i.e., inferences in
F1 are independent of those in Fj for j > 1) which is a desirable property for a gate-
keeping procedure. Property 2 ensures that the local tests of intersection hypotheses
are of level ≤ α. In what follows, it is assumed that all probability expressions
are evaluated under appropriate null hypotheses (e.g., in case of Property 2, under
H(I) = H(I1)

⋂
· · ·
⋂

H(Is)), which will not be shown notationally.
Define the local test of the intersection hypothesis H(I) as reject H(I) if

φI(p1(I1), . . . , ps(Is)) ≤ α. (7)

By Property 2 it follows that P controls the FWER at level α because it is a closed
procedure.

A particular class of mixing functions that we will study in this paper has the
following general form. For any specified I = I1

⋃
· · ·
⋃

Is,

φI(p1(I1), . . . , ps(Is)) = min

(
p1(I1)

c1(I|α)
, . . . ,

ps(Is)

cs(I|α)

)
, (8)

where the cj(I|α) are the coefficients determined to satisfy Property 2 subject to
1 = c1(I|α) ≥ · · · ≥ cs(I|α) ≥ 0. Property 1 is obviously satisfied by this mixing
function. Monotonicity is imposed on the coefficients so that greater weights are
assigned to the p-values for the intersection hypotheses from the earlier families than
to those from the later families. This helps account for the hierarchical structure of
the problem in the sense that power of the tests of the more important hypotheses
(included in the earlier families) are improved at the expense of power of the tests
of the less important hypotheses (included in the later families). Using this mixing
function, the local test (7) simplifies to

pj(Ij) ≤ αcj(I|α) for at least one j = 1, . . . , s. (9)
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Different mixing functions differ in their choice of the coefficients cj(I|α). We will
consider two mixing functions: Bonferroni and parametric. The Bonferroni mixing
function ignores correlations among the test statistics while the parametric mixing
function takes them into account by assuming a joint distribution for the test statis-
tics.
Remark 1: The cj(I|α) that satisfy Property 2 always exist but are not unique. A
trivial choice is c1(I|α) = 1 and cj(I|α) = 0 for j = 2, . . . , s. �

4.1 Bonferroni mixing function

The Bonferroni mixing function uses the coefficients defined recursively as follows:
Let c1(I|α) = 1 and

cj(I|α) = cj−1(I|α)[1− fj−1(Ij−1|α)] =

j−1∏

k=1

[1− fk(Ik|α)], j = 2, . . . , s, (10)

where I = I1
⋃

· · ·
⋃
Is and fk(Ik|α) = ek(Ik|α)/α. Substituting this formula for

cj(I|α) in (9), we get that the intersection hypothesis H(I) is rejected at level α iff

pj(Ij) ≤ α

j−1∏

k=1

[1− fk(Ik|α)] for at least one j = 1, . . . , s. (11)

For the sake of simplicity, henceforth we will assume that the error rate functions
ej(Ij|α) of all the component procedures P j are proportional to α. Therefore the error
rate fractions fj(Ij|α) and hence the cj(Ij |α) are independent of α and we denote them
simply by fj(Ij) and cj(Ij), respectively. Note that the error rate function (3) satisfies
this property. This error rate function can be used as an upper bound on the exact
error rate function of not only the truncated Holm procedure, but also the truncated
Hochberg and truncated Hommel procedures (see Brechenmacher et al., 2011).

The main consequence of this simplifying assumption is that we can define the
local p-value of any H(I) simply by equating it to the corresponding mixing function,
i.e.,

p(I) = φI(p1(I1), . . . , ps(Is)) = min

(
p1(I1)

c1(I)
, . . . ,

ps(Is)

cs(I)

)
,

since this equals the smallest α at which H(I) can be rejected using the local test
(7). It should be noted that the local p-values are well-defined also in the general
case where the ej(Ij |α) are not proportional to α, but the calculation of p(I) is more
involved in that case and must be done numerically as explained in Remark 3.

Once the p(I)-values are evaluated for allH(I) then using the closure principle, the
adjusted p-value for any individual hypothesis Hi can be defined as p̃i = maxI∋i p(I),
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where the maximum is taken over all index sets I that contain i. We can reject Hi

at level α if p̃i ≤ α.
Remark 2: As an example of an error rate function which is not proportional to
α, consider again the truncated Holm procedure but suppose that the test statistics
and hence their p-values are independent. Then its exact error rate function is given
by

e(I|α) = 1−

[
1−

(
γ

|I|
+

(1− γ)

n

)
α

]|I|
.

The upper bound given in (3) is the Bonferroni upper bound on this expression.
For another example, Brechenmacher et al. (2011) have given the following exact
expression for the error rate function of the truncated Hommel procedure under the
same assumption of independent test statistics:

e(I|α) = 1−

[
1−

(1− γ)α

n

]|I|−1 [
1−

(
γα +

(1− γ)α

n

)]
,

which is not proportional to α. �

Remark 3: If the cj(I|α) are functions of α, the local test (9) is still well-defined
as it can be applied for any fixed α. To compute p(I), we can numerically solve for
the smallest α that satisfies the inequality

min

(
p1(I1)

c1(I|α)
, . . . ,

ps(Is)

cs(I|α)

)
≤ α.

A smallest α satisfying this inequality always exists since the test rejects if α = 1 and
accepts if α = 0. However, one cannot interpret that smallest α as p(I) unless the test
is α-consistent (Roth, 1999; Lehmann and Romano, 2005), i.e., the indicator function
of the test (which equals 1 if the test rejects and 0 if it accepts) is nondecreasing in
α. It is immediately evident that the local test (9) will be α-consistent if αcj(I|α) is
nondecreasing in α for all j. In particular, this is true if the cj(I|α) are independent
of α for all j and I. �

We next state the main result of this paper.

Proposition 1 If the component procedures P1, . . . ,Pm−1 are separable then the lo-
cal test (7) of each intersection hypothesis H(I) which uses the Bonferroni mixing
function defined by (8) and (10) is an α-level test, i.e., it satisfies Property 2. Hence
by the closure property, the mixture procedure P strongly controls the FWER at level
α.

Although not needed for the above proposition, the subsequent propositions make
the assumption that the error rate functions of the component MTPs are proportional
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to α, so that we can equate p(I) for any intersection hypothesis H(I), where I =
I1
⋃

· · ·
⋃
Is, to the corresponding mixing function φI(p1(I1), . . . , ps(Is)).

To state the following proposition, we need the concept of consonance introduced
by Gabriel (1969). An MTP is said to be consonant if whenever it rejects an inter-
section hypothesis H(I) =

⋂
i∈I Hi, it rejects at least one component hypothesis Hi,

i ∈ I.

Proposition 2 If the component procedures P1, . . . ,Pm−1 are separable and conso-
nant then the mixture procedure P based on the Bonferroni mixing function is equiva-
lent to the multistage procedure defined in Section 3 in that both procedures make the
same decisions, i.e., they both reject the same hypotheses.

If any one or more of the component MTPs is allowed to be non-consonant then the
equivalence claimed in this proposition may no longer hold as the following example
shows. It also shows that the mixture procedure can be more powerful than the
multistage procedure in that case.
Example 2: This example, taken from Dmitrienko, Kordzakhia and Tamhane
(2011), is designed to illustrate an important property of mixture procedures. Con-
sider two families, F1 = {H1, H2, H3, H4} and F2 = {H5}. The first family serves as a
parallel gatekeeper for the other family. The raw p-values for the five null hypotheses
are p1 = 0.0053, p2 = 0.0126, p3 = 0.0131, p4 = 0.0224 and p5 = 0.0022. To construct
the two-stage and mixture gatekeeping procedures, we will use the truncated Hom-
mel procedure (which is non-consonant since the untruncated Hommel procedure is
non-consonant; see Westfall et al., 1999, Section 2.5.4) with γ = 3/4 as the primary
component procedure P1 and the regular Hommel procedure as the secondary compo-
nent procedure P2. The adjusted p-values for the two-stage procedure are computed
by the direct-calculation algorithm introduced in Dmitrienko et al. (2008b) and the
adjusted p-values for the mixture procedure are found by the method described in
Section 4.1. Using a one-sided α = 0.025, it is shown in Dmitrienko, Kordzakhia
and Tamhane (2011) that the adjusted p-values produced by the two-stage procedure
for the five null hypotheses are 0.0210, 0.0276, 0.0276, 0.0276, 0.0276, respectively.
This means that the two-stage procedure rejects H1 and thus passes the parallel gate-
keeper. However, the only null hypothesis in the second family cannot be rejected.
The mixture procedure provides an advantage over the two-stage procedure and re-
jects two null hypotheses in this problem. In particular, the adjusted p-values for the
five null hypotheses are given by 0.0210, 0.0276, 0.0276, 0.0276, 0.0233, respectively,
and thus the mixture procedure rejects both H1 and H5. �
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4.2 Parametric mixing function

As before, assume that H(I) =
⋂

i∈I Hi is true where I = I1
⋃

· · ·
⋃

Is. To obtain an
α-level test of each H(I) we must have under H(I),

P {φI(p1(I1), . . . , ps(Is)) ≤ α} = P {pj(Ij) ≤ αcj(I|α) for at least one j = 1, . . . , s} ≤ α.
(12)

The coefficients cj(I|α) are calculated as follows starting with c1(I|α) = 1. Having
recursively computed ck(I|α) for k = 1, . . . , j − 1, solve for cj(I|α) from

P {p1(I1) ≤ α or · · · or pj−1(Ij−1) ≤ αcj−1(I|α) or pj(Nj) ≤ αcj(I|α)} = α (13)

for j = 2, . . . , s. Notice that in the last term of the probability expression we use
pj(Nj) and not pj(Ij). The reason for this will become clear in Proposition 3.

To solve equation (13), one needs to know the joint distribution of the pj(Ij) values
which is often difficult to specify. It is easier to specify the joint distribution of the as-
sociated test statistics. For the sake of illustration, suppose that t-statistics, denoted
by ti, are used to test the hypotheses Hi (1 ≤ i ≤ n) and union-intersection statistics
tj(Ij) = maxi∈Ij ti are used to test the intersection hypotheses H(Ij) =

⋂
i∈Ij

Hi.
Further suppose that t1, . . . , tn have an n-variate t-distribution with ν degrees of free-
dom (d.f.) and correlation matrix R = {ρij} under the overall intersection hypothesis
H(N) =

⋂
i∈N Hi.

Let R(Nj) denote the submatrix of R corresponding to the joint distribution of
the ti for i ∈ Nj and let t∗(α|ν, nj, R(Nj)) be the upper α critical constant of the
distribution of tj(Nj) = maxi∈Nj

ti. Note that in order for the procedure Pj to be
separable (1 ≤ j ≤ m − 1), it must use this common critical constant to test all
intersection hypotheses H(Ij) =

⋂
i∈Ij

Hi so that if Ij ⊂ Nj then

ej(Ij|α) = P{tj(Ij) ≥ t∗(α|ν, nj, R(Nj))}

< P{tj(Nj) ≥ t∗(α|ν, nj, R(Nj))}

= ej(Nj |α) = α.

The Dunnett (1955) procedure is an example of such a separable procedure. On
the other hand, Pm can be non-separable, e.g., the step-down Dunnett procedure of
Naik (1975) which uses the critical constant t∗(α|ν, |Im|, R(Im)) (where R(Im) is the
submatrix of R(Nm) corresponding to the correlation matrix of the ti, i ∈ Im) to test
the intersection hypothesis H(Im). To keep the exposition simple, we will assume
that Pm is also separable and uses a common critical constant t∗(α|ν, nm, R(Nm)) to
test all intersection hypotheses H(Im) for Im ⊆ Nm.

The coefficients cj(I|α) are calculated recursively starting with c1(I|α) = 1. Next
we calculate c2(I|α) from the equation

P {t1(I1) ≥ t∗(α|ν, n1, R(N1)) or t2(N2) ≥ t∗(αc2(I|α)|ν, n2, R(N2))} = α.
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Note that the evaluation of this probability requires the knowledge of not only the
correlation matrices R(N1) and R(N2), but also the cross-correlation matrix be-
tween the ti, i ∈ I1 and tj, j ∈ N2. In general, having recursively computed
c2(I|α), . . . , cj−1(I|α), we calculate cj(I|α) from the equation

P {t1(I1) ≥ t∗(α|ν, n1, R(N1)) or · · · or tj−1(Ij−1) ≥ t∗(αcj−1(I|α)|ν, nj−1, R(Nj−1))

or tj(Nj) ≥ t∗(αcj(I|α)|ν, nj, R(Nj))} = α.

The evaluation of this probability requires the knowledge of the correlations among
all the ti for i ∈ Ĩj where Ĩj = I1

⋃
· · ·
⋃
Ij−1

⋃
Nj . The clinical trial example in

Section 6 gives an illustration of the calculation of the parametric mixing function.
We conclude this section by stating a result about parametric mixing functions.

Proposition 3 If the component procedures P1, . . . ,Pm−1 are separable and conso-
nant then the mixture procedure P based on the parametric mixing function satisfies
the parallel gatekeeping condition, i.e., the hypotheses in Fj+1 are testable iff at least
one hypothesis is rejected in Fj (1 ≤ j ≤ m− 1).

5 Mixture procedures for general gatekeeping

In Dmitrienko et al. (2007) we introduced parallel and serial rejection sets to take
into account logical restrictions among the hypotheses in tree-structured gatekeeping
framework. Here we introduce a much simpler and yet a more general way of speci-
fying logical restrictions through the so-called restriction functions. Note that logical
restrictions defined here are different from those considered by Shaffer (1986).

Consider a hypothesis Hi ∈ Fs+1 and let I = I1
⋃

· · ·
⋃

Is, where Ij ⊆ Nj (1 ≤
j ≤ s) and s is fixed between 1 and m − 1. The restriction function Li(I) is an
indicator function taking a value 0 if Hi is non-testable and 1 if Hi is testable when
the hypotheses Hj for all j ∈ I are accepted and the other hypotheses in F1, . . . , Fs

are rejected. The restriction functions satisfy the following natural conditions.

1. Monotonicity Condition: For any Hi ∈ Fs+1, if Li(I) = 0 then Li(I
′) = 0 for

I ⊆ I ′ ⊆ N1

⋃
· · ·
⋃
Ns, i.e., if Hi ∈ Fs+1 is non-testable when the hypotheses

Hj for j ∈ I are accepted then it remains non-testable if more hypotheses from
F1, . . . , Fs are accepted.

2. Parallel Gatekeeping Condition: Suppose I = I1
⋃
· · ·
⋃

Is and Ij = Nj for
some j = 1, . . . , s then Li(I) = 0 for all i ∈ Nk for k > j, i.e., if all hypotheses
in Fj are accepted then all hypotheses in Fk for k > j are non-testable.
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Example 3: As an example of a logical restriction which cannot be modeled
using the tree-structured gatekeeping framework but can be readily modeled using the
restriction function approach, consider the FDA Guidance for Industry on rheumatoid
arthritis (FDA, 1999) which states that “... trial results were considered to support
a conclusion of effectiveness when statistical evidence of efficacy was shown for at
least three of the four measures . . . .” Suppose that in addition to n1 = 4 primary
endpoints there are n2 ≥ 1 secondary endpoints, which are tested only if the efficacy
requirement on the primary endpoints is met. Let F1 = {H1, H2, H3, H4} and F2 =
{H5, . . . , H4+n2

}. Then the restriction functions for Hi ∈ F2 are given by:

Li(∅) = Li({1}) = Li({2}) = Li({3}) = Li({4}) = 1

and Li(I1) = 0 for all other index sets I1 ⊆ N1 = {1, 2, 3, 4}. �

Once all the logical restrictions are specified through the restriction functions,
the local p-values, p(I), are modified to take into account the logical restrictions as
follows (all index sets Ij below are assumed to be nonempty):

• Case 1: I = Ij, s = 1. In this case p(I) = pj(Ij).

• Case 2: I = I1
⋃
· · ·
⋃

Is for s ≥ 2. In this case we first recursively define the
index sets of testable hypotheses as follows. Let I∗1 = I1 and

I∗j = {i ∈ Ij : Li(I
∗
1 , . . . , I

∗
j−1) = 1} for j = 2, . . . , s. (14)

Next let pj(I
∗
j ) = 1 if I∗j is empty. Then

p(I) =

{
φI(p1(I

∗
1 ), . . . , ps(I

∗
s )) if I

∗
s 6= ∅

φI(p1(I
∗
1 ), . . . , pr(I

∗
r )) if I

∗
r+1, . . . , I

∗
s = ∅.

(15)

For the special class of mixing functions (8), we have

φI(p1(I
∗
1 ), . . . , ps(I

∗
s )) = min

(
p1(I

∗
1 )

c1(I|α)
, . . . ,

ps(I
∗
s )

cs(I|α)

)
.

Note that the coefficients cj(I|α) depend on the original index sets, I1, . . . , Is and not
on the modified index sets, I∗1 , . . . , I

∗
s . �

Proposition 4 If the component procedures P1, . . . ,Pm−1 are separable and conso-
nant then the mixture procedure P based on the mixing function (15) is consistent
with the specified logical restrictions. In other words, for any hypothesis Hi ∈ Fj+1, if
Li(A1

⋃
· · ·
⋃

Aj) = 0 for any j < m, where A1, . . . , Aj are the index sets of accepted
hypotheses from F1, . . . , Fj, then the mixture procedure accepts Hi.
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To illustrate this proposition we give the following example dealing with two
families. The example shows that mixture procedures in hypothesis testing problems
with general gatekeeping restrictions are based on more complex rules compared to
parallel gatekeeping restrictions. In particular, it is shown in Section 3 that mixture
gatekeeping procedures and multistage gatekeeping procedures derived from the same
component procedures are equivalent for parallel gatekeeping. In the general case,
mixture gatekeeping procedures also have a multistage structure; however, they may
use a different set of component procedures.
Example 4: Consider a two-family problem with F1 = {H1, H2} and F2 =
{H3, . . . , Hn} and the corresponding index sets N1 = {1, 2} and N2 = {3, . . . , n}.
Further, consider a mixture of the Bonferroni procedure (P1) and the Holm procedure
(P2) using the Bonferroni mixing function. Assume the following logical restrictions:

• H3, . . . , Hn−1 are testable iff H2 is rejected.

• Hn is testable iff at least one hypothesis in F1 is rejected.

The restriction functions corresponding to these logical restrictions are as follows.

• If I1 = ∅ or I1 = {1}, then L3(I1) = L4(I1) = · · · = Ln(I1) = 1.

• If I1 = {2}, then L3(I1) = L4(I1) = · · · = Ln−1(I1) = 0 and Ln(I1) = 1.

• If I1 = {1, 2}, then L3(I1) = L4(I1) = · · · = Ln(I1) = 0.

It will be shown below that, depending on the number of hypotheses rejected in F1,
the mixture procedure may use the Holm procedure or a slightly different procedure
in F2. The p-values for the intersection hypotheses in F 1 and F 2 are given by

p1(I1) = 2min
i∈I1

pi, I1 ⊆ N1,

p2(I2) = |I2|min
i∈I2

pi, I2 ⊆ N2.

Next note that the error rate function for the Bonferroni procedure is e1(I1|α) =
|I1|α/2. Hence f1(I1) = 0 if I1 = ∅, f1(I1) = 1/2 if I1 = {1} or {2} and f1(I1) = 1 if
I1 = {1, 2}. Finally, note that I∗2 = ∅ if I1 = {1, 2}, I∗2 = I2 if I1 = {1} or I1 = ∅ and
I∗2 = {n} if I1 = {2}. Using these facts the p-values for the intersection hypotheses
H(I) in F can be computed as follows.

• Case 1: If I1 = {1, 2},

p(I) = p1(I1) = 2min(p1, p2).
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• Case 2: If I1 = {1},

p(I) = min (2p1, 2p2(I
∗
2 )) = 2min

(
p1, |I2|min

i∈I2
pi

)
.

• Case 3: If I1 = {2},

p(I) = min (2p2, 2p2(I
∗
2 )) = 2min(p2, pn).

• Case 4: If I1 = ∅,
p(I) = p2(I

∗
2 ) = |I2|min

i∈I2
pi.

From these expressions the mixture procedure can be shown to consist of the
following decision rules:

• Case 1 (Both H1 and H2 are accepted): In this case the parallel gatekeeping
property ensures that all Hi ∈ F2 are accepted without tests. To see this,
consider any hypothesis Hi ∈ F2. To reject Hi, it must be true that p(I) ≤ α
for all index sets I with i ∈ I. However, if I = I1

⋃
{i} with I1 = {1, 2} then

p(I) = p1(I1) = 2min(p1, p2) > α since bothH1 and H2 are accepted. Therefore
no Hi ∈ F2 can be rejected and hence all are accepted without tests.

• Case 2 (H1 is accepted, H2 is rejected): In this case p(I) ≤ α for all index
sets I containing {2} since H2 is rejected. Therefore, to derive the compo-
nent procedure used to test the hypotheses in F2, we only need to consider
I1 = {1} or I1 = ∅. If I1 = {1} then the local test of H(I) rejects if
p(I) = 2min (p1, |I2|mini∈I2 pi) ≤ α. However, 2p1 > α (since H1 is accepted),
so we must have |I2|mini∈I2 pi ≤ α/2. This local test of H(I) is the Bonferroni
test at level α/2, which means that the hypotheses in F2 are tested using the
Holm procedure at level α/2. On the other hand, if I1 = ∅ then the local test of
H(I) rejects if p(I) = |I2|mini∈I2 pi ≤ α. This local test of H(I) is the Bonfer-
roni test at level α and thus the component procedure used in F2 is the Holm
procedure at level α. The net result is that the mixture gatekeeping procedure
uses the Holm procedure at level α/2 in F2 which was the component procedure
selected for this family.

• Case 3 (H1 is rejected, H2 is accepted): This case is similar to Case 2. Here
we only need to consider I1 = {2} or I1 = ∅. If I1 = {2} then the local test
of H(I) rejects if p(I) = 2min(p2, pn) ≤ α. However, 2p2 > α (since H2 is
accepted), so we must have pn ≤ α/2. If I1 = ∅ then, as shown above, the
component procedure used in F2 is the Holm procedure at level α. The net
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result is that the procedure used in F2 rejects Hn if pn ≤ α/2 and if Hn is
rejected by the Holm procedure at level α. Since there are n − 2 hypotheses
in F2 and if q(1) ≤ · · · ≤ q(n−2) denote their ordered p-values with pn = q(k) for
some k = 1, . . . , n− 2 then the procedure used in F2 rejects Hn if

pn ≤ α/2 and q(i) ≤ α/(n− i− 1), i = 1, . . . , k.

If k ≤ n − 3 and the above Holm procedure rejects Hn then the condition
pn ≤ α/2 is automatically satisfied. If k = n − 2, i.e., if pn is the largest p-
value among p3, . . . , pn then the above Holm procedure must reject all secondary
hypotheses and pn = q(n−2) ≤ α, which is automatically satisfied if pn ≤ α/2.
Thus the mixture gatekeeping procedure does not use a simple Holm procedure
in F2 even though the Holm procedure was originally specified for this family.

• Case 4 (Both H1 and H2 are rejected): In this case we only need to consider
I1 = ∅ since all H(I), which include H1 or H2 or both, are rejected. As shown
above, the procedure used in F2 is the Holm procedure at level α. �

6 Clinical trial example

Mixture procedures with general gatekeeping restrictions introduced in Section 5 will
be illustrated here using a clinical trial example with artificial data. A clinical trial
in patients with pulmonary arterial hypertension (PAH) in which two doses of an
experimental treatment versus placebo (the doses are labeled L and H, placebo is
labeled Plac) were tested. The dose-placebo comparisons were performed with respect
to three ordered endpoints, Endpoint P (six-minute walk distance), Endpoint S1
(dyspnea score) and Endpoint S2 (quality of life). The trial employed a balanced
design and the sample size was n = 110 patients per treatment arm.

As shown in Figure 1, the six hypotheses of no treatment effect studied in this
clinical trial were grouped into three families (the hypotheses were equally weighted
within each family):

• Family 1 (F1): L-Plac (H1) and H-Plac (H2) comparisons for Endpoint P.

• Family 2 (F2): L-Plac (H3) and H-Plac (H4) comparisons for Endpoint S1.

• Family 3 (F3): L-Plac (H5) and H-Plac (H6) comparisons for Endpoint S2.

[Insert Figure 1 here]
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We assume that the joint distribution of the two-sample t-statistics is approxi-
mately multivariate normal and to reflect that denote them as z-statistics. The reason
for this is two-fold: (i) the sample size per treatment arm is large, but more impor-
tantly (ii) the joint distribution of the statistics is not multivariate t since the sample
standard deviations of each endpoint are different and thus the statistics do not share
a common denominator. The one-sided p-values associated with the z-statistics are
listed in Table 1 (adjusted p-values shown in Table 1 are discussed below).

[Insert Table 1 here]

The hypotheses within each dose were tested subject to a fixed-sequence restric-
tion, i.e., a hypothesis in F2 or F3 was tested iff higher-level hypotheses associated
with the same dose were rejected. For example, H5 was testable iff H1 and H3 were
rejected. Thus the restriction functions were given by

• Li(I) = 0 if I contains i − 2 and Li(I) = 1 otherwise, where I ⊆ {1, 2} and
i = 3, 4.

• Li(I) = 0 if I contains i−2 or i−4 and Li(I) = 1 otherwise, where I ⊆ {1, 2, 3, 4}
and i = 5, 6.

We will illustrate the process of constructing the following two mixture procedures
and evaluate their performance:

• Procedure 1 is a nonparametric mixture procedure which uses the Bonferroni
procedure in F1 and F2 and the Holm procedure in F3 with the Bonferroni
mixing function.

• Procedure 2 is a parametric mixture procedure which uses the single-step Dun-
nett procedure in F1 and F2 and the step-down Dunnett procedure in F3 with
the parametric mixing function.

Beginning with Procedure 1, the adjusted p-values for the six hypotheses are com-
puted using the algorithm given in Section 5 based on the Bonferroni mixing function.
This algorithm is based on a complete enumeration of all 63 non-empty intersections
of the original six hypotheses. A local Bonferroni p-value is computed for each in-
tersection and the adjusted p-values for the hypotheses are found using the closure
principle. As an illustration, consider the intersection hypothesis corresponding to
the index set I = {1, 3, 4, 6}. Note that I1 = {1}, I2 = {3, 4} and I3 = {6} but I2
and I3 need to be modified to account for the logical restrictions. Recall that H3 is
non-testable if H1 is accepted; similarly, H6 is non-testable if H4 is accepted. Thus
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I∗1 = {1}, I∗2 = {4} and I∗3 = ∅. Furthermore, the Bonferroni p-values for the family-
specific intersection hypotheses H(I∗1 ) and H(I∗2 ) are p1(I

∗
1 ) = 2p1 and p2(I

∗
2 ) = 2p4,

respectively. Therefore, the local p-value for H(I) is given by

p(I) = min

(
p1(I

∗
1 ),

p2(I
∗
2 )

c2(I)

)
= min(2p1, 4p4)

since c2(I) = 1− f1(I1) = 1/2.
The calculation of the adjusted p-values for Procedure 2 assumes that the joint

distribution of the six test statistics is approximately multivariate normal. This cal-
culation is based on an algorithm similar to the one above with the following two
changes. First, the Bonferroni p-values for family-specific intersection hypotheses
need to be replaced by Dunnett p-values and, second, the parametric mixing function
needs to be applied to compute local p-values for all intersection hypotheses. Using
the same intersection hypothesis as above, the Dunnett p-value for H(I∗1) is com-
puted from the joint distributions of z1 and z2. Due to the balanced design, the test
statistics follow a central bivariate normal distribution under H1

⋂
H2 with correla-

tion coefficient ρ = 1/2. Let G(z|ρ) denote the cumulative distribution function of
max(z1, z2). Then p1(I

∗
1 ) = 1−G(z1|ρ). Similarly, p2(I

∗
2 ) = 1−G(z4|ρ). The mixing

function for H(I) is given by

φI(p1(I
∗
1 ), p2(I

∗
2 )|α) = min

(
p1(I

∗
1 ),

p2(I
∗
2 )

c2(I|α)

)
, (16)

with the coefficient c2(I|α) computed from

P{z1 ≥ z∗(α|ρ) or z4 ≥ z∗(αc2(I|α)|ρ)} = α,

where z∗(α|ρ) = G−1(1 − α|ρ). It can be shown that in this simple case the α-
consistency condition defined in Section 4.1 is satisfied and the local p-value for this
intersection hypothesis is given by the smallest α for which (16) is ≤ α.

Table 1 displays the adjusted one-sided p-values for the six hypotheses of inter-
est produced by the two procedures. The adjusted p-values for Procedure 2 were
computed assuming the following correlation matrix for the three endpoints:




1 0.4 0.2
0.4 1 0.4
0.2 0.4 1


 .

Using a one-sided α = 0.025, Procedure 1 rejects three hypotheses (H1, H2 and H4),
while Procedure 2 rejects five hypotheses (H1, H2, H3, H4 and H6). Furthermore,
Table 1 illustrates Proposition 4 which states that both procedures are consistent
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with the logical restrictions. For example, Procedure 1 cannot reject H5 since it did
not reject H3.

The power gain of Procedure 2 is due to the fact that, unlike Procedure 1, it
utilizes the knowledge of the joint distribution of the six test statistics. However, it
should be noted that at least part of the gain is because the correlations between
the endpoints are assumed to be known. In case of dose versus control problems,
the correlations are known, being functions of the known sample sizes but in case of
multiple endpoints the correlations are generally unknown.

7 Concluding remarks

In this paper we have provided a general theory of mixture procedures for gatekeep-
ing. Both nonparametric and parametric mixture procedures are derived using the
corresponding mixing functions. It is shown that if the component procedures for
the first m − 1 families are consonant then the mixture procedure for parallel gate-
keeping is equivalent to the general stepwise procedure proposed in Dmitrienko et
al. (2008b) based on the error rate function. Most importantly, mixture procedures
can be extended to very general types of logical restrictions which were not amenable
by the previous approaches, e.g., the stepwise approach proposed in Dmitrienko et
al. (2008b) was applicable only to parallel gatekeeping restrictions while the tree-
gatekeeping restrictions were dealt with using Bonferroni (nonparametric) procedures
and a rather complex weight assignment algorithm embedded in the closure proce-
dure. Thus the mixture approach offers a powerful and a generally applicable method
to construct gatekeeping procedures. In fact, mixture-based gatekeeping procedures
have found multiple applications in Phase III clinical trials. For example, Brechen-
macher et al. (2011) applied the mixture method to define Hommel-based gatekeeping
procedures that were successfully used in the lurasidone development program for the
treatment of schizophrenia (Meltzer et al., 2011).

An open problem for future research is to derive simultaneous confidence regions
associated with gatekeeping procedures along the lines of Strassburger and Bretz
(2008), Guilbaud (2008, 2009, 2012) and Guilbaud and Karlsson (2011).
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Appendix

Proof of Proposition 1: If s = 1, i.e., I = Ij then φI(pj(Ij)) = pj(Ij), so that
under H(Ij),

P{φI(pj(Ij)) ≤ α} = P{pj(Ij) ≤ α} ≤ α.

Next suppose s > 1. Then under H(I) =
⋂s

j=1H(Ij)

P{φI(p1(I1), . . . , ps(Is)) ≤ α}

= P

{
min

(
p1(I1)

c1(I)
, . . . ,

ps(Is)

cs(I)

)
≤ α

}

= P

{
s⋃

j=1

[pj(Ij) ≤ αcj(I)]

}

≤
s∑

j=1

P {pj(Ij) ≤ αcj(I)}

≤
s−1∑

j=1

ej(Ij|αcj(I)) + es(Ns|αcs(I))

=

s−1∑

j=1

αcj(I)fj(Ij) + αcs(I)

= α

[
s−1∑

j=1

cj(I)fj(Ij |α) + cs(I)

]
. (17)

Now from (10), cs(I) = cs−1(I)[1 − fs−1(Is−1)], and so cs−1(I)fs−1(Is−1) + cs(I) =
cs−1(I). Applying this formula recursively, we see that the quantity inside the square
brackets in (17) equals c1(I) = 1 and thus (17) equals α. This completes the proof of
the proposition. �

Proof of Proposition 2: We will show that the mixture multistage gatekeeping
procedures reject exactly the same hypotheses for any set of raw p-values, p1, . . . , pn.
Part 1: First assume that the multistage procedure rejects a hypothesis Hi ∈ Fj .
Then we want to show that the mixture procedure also rejects Hi, i.e., p(I) ≤ α
for any index set I = I1

⋃
· · ·
⋃

Is such that i ∈ Ij ⊆ I. Note that since P j rejects
Hi ∈ Fj using the multistage procedure and it is closed, from (5) we have

pj(Ij) ≤ αj = α

j−1∏

k=1

[1− fk(Ak)] for all Ij such that i ∈ Ij, (18)



For more information, see http://www.multxpert.com/wiki/Gatekeeping Papers 24

where pj(Ij) is the local p-value for testing H(Ij) using the closed representation of
Pj .

Consider two cases:
Case 1 (i ∈ I1): We have either I = I1 in which case p(I) = p1(I1) or we have
I = I1

⋃
· · ·
⋃
Is for s ≥ 2 in which case p(I) ≤ p1(I1). In both cases p1(I1) ≤ α1 = α

and so p(I) ≤ α.
Case 2 (i ∈ Ij for j > 1): Let R1, . . . , Rj−1 denote the index sets of the rejected
hypotheses from F1, . . . , Fj−1. Consider the following subcases:

• Case 2 (a) (Ik
⋂
Rk 6= ∅ for at least one k = 1, . . . , j−1): Since the component

procedures Pk are closed and some hypotheses Hj ∈ Ik
⋂
Rk are rejected, we

have

pk(Ik) ≤ αk = α
k−1∏

ℓ=1

[1− fℓ(Aℓ)].

Therefore

p(I) ≤
pk(Ik)

ck(I)
=

pk(Ik)∏k−1
ℓ=1 [1− fℓ(Aℓ)]

≤ α.

• Case 2 (b) (Ik
⋂

Rk = ∅ for all k = 1, . . . , j − 1): In this case Ik ⊆ Ak for all
k = 1, . . . , j − 1. Since ek(Ik|αk) and hence fk(Ik) are monotone, we have

1− fk(Ak) ≤ 1− fk(Ik) for all k = 1, . . . , j − 1.

Combining these inequalities with (18) and (5) we have,

pj(Ij)∏j−1
k=1[1− fk(Ik)]

≤
pj(Ij)∏j−1

k=1[1− fk(Ak)]
≤ α.

Therefore

p(I) ≤
pj(Ij)∏j−1

k=1[1− fk(Ik)]
≤ α.

Part 2: Next we assume that the mixture procedure rejects a hypothesis Hi ∈ Fj .
Then we want to show that the multistage procedure also rejects Hi. Thus we assume
that p(I) ≤ α for all I such that i ∈ I. Again consider two cases.
Case 1 (i ∈ I1): Choose I = I1. Then p(I) = p1(I1) ≤ α for all I1 containing i. So
P1 and hence the multistage procedure rejects Hi.
Case 2 (i ∈ Ij for j > 1): Choose any Ij containing i and let I = A1

⋃
· · ·
⋃
Aj−1

⋃
Ij .

Then p(I) ≤ α. We want to show that pj(Ij) ≤ αj (where αj is defined in (18)).
It follows that since all hypotheses in A1, . . . , Aj−1 are accepted, pk(Ak) > α for
k = 1, . . . , j − 1. This is because if pk(Ak) ≤ α for some k then by the consonance
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property of Pk, at least one hypothesis Hℓ, ℓ ∈ Ak must be rejected which is not true.
Therefore

pk(Ak)∏k−1
ℓ=1 [1− fℓ(Aℓ)]

> pk(Ak) > α for k = 1, . . . , j − 1.

On the other hand,

p(I) = min

(
p1(A1), . . . ,

pj−1(Aj−1)∏j−2
ℓ=1[1− fℓ(Aℓ)]

,
pj(Ij)∏j−1

ℓ=1[1− fℓ(Aℓ)]

)
≤ α.

Therefore

pj(Ij)∏j−1
ℓ=1[1− fℓ(Aℓ)]

≤ α or pj(Ij) ≤ α

j−1∏

ℓ=1

[1− fℓ(Aℓ)] = αj.

Since this is true for all Ij containing i and since Pj is closed, it follows that Pj

and hence the multistage procedure rejects Hi. This completes the proof of the
proposition. �

Proof of Proposition 3: Since the parallel gatekeeping restriction is a special case of
the general gatekeeping restrictions, Proposition 3 follows directly from Proposition 4.
�

Proof of Proposition 4: Consider a hypothesis Hi ∈ Fs+1 and assume that
Li(A1

⋃
· · ·
⋃

As) = 0. Let I = A1

⋃
· · ·
⋃

As

⋃
{i}, i.e., Ij = Aj (1 ≤ j ≤ s)

and Is+1 = {i}. Further let J = A1

⋃
· · ·
⋃
As. Note that I∗s+1 is empty. Therefore

p(I) = φI(p1(A
∗
1), . . . , ps(A

∗
s), ps+1(I

∗
s+1)) = φJ(p1(A

∗
1), . . . , ps(A

∗
s)) = p(J),

where A∗
1 = A1 and A∗

j for j > 1 are defined recursively as in (14). Now we must
have p(I) = p(J) > α because if p(J) ≤ α then by the consonance property of the
mixture procedure, at least one hypothesis Hk for k ∈ J must be rejected; however,
all hypotheses in J are accepted. Since i ∈ I and p(I) > α, Hi must be accepted. �
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Table 1. Test statistics and raw p-values in the pulmonary arterial hypertension
clinical trial example. The asterisk identifies the adjusted p-values that are significant
at the one-sided 0.025 level.

Family Null Test Raw Adjusted p-value
hypothesis statistic p-value Procedure 1 Procedure 2

F1 H1 2.29 0.0115 0.0230∗ 0.0224∗

H2 2.54 0.0059 0.0118∗ 0.0112∗

F2 H3 2.25 0.0127 0.0254 0.0248∗

H4 2.38 0.0091 0.0230∗ 0.0174∗

F3 H5 2.20 0.0144 0.0288 0.0273
H6 2.01 0.0228 0.0457 0.0221∗
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Figure 1. Ordering of the hypotheses in the clinical trial example. Families F1, F2, F3

refer to the primary endpoint P, secondary endpoint S1 and secondary endpoint S2,
respectively. Hypotheses H1, H3, H5 refer to low dose versus placebo comparisons
while hypotheses H2, H4, H6 refer to high dose versus placebo comparisons.

H1 H2

H3 H4

H5 H6


